8. A Note on Knots and Flows on 3-manifolds

By Gikô Ikehagi* and Dale Rolfsen**

(Comm. by Kijirô Kunugi, M. J. A., Jan. 12, 1971)

H. Seifert shows in [1] (Satz 11) that for any torus knot \(k \) in the 3-sphere \(S^3 \) there is a flow on \(S^3 \) with \(k \) as an orbit, and conversely, that if a homotopy 3-sphere \(\Sigma^3 \) admits a flow on it so that all orbits are closed then \(\Sigma^3 = S^3 \) and each orbit is a torus knot.

Here, we consider the following question: For any knot \(k \) in \(S^3 \) does there exist a non-singular flow on \(S^3 \) having \(k \) as an orbit, allowing for the flow having non-closed orbits? In this paper, we give an affirmative answer to this question.

Manifolds and maps, etc in this paper are assumed to be smooth \((C^\infty)\) ones. A flow on a manifold \(M \) is a 1-parameter group of transformations \(\phi: \mathbb{R} \times M \to M \) \((\mathbb{R}, \text{the real numbers})\). \(x \in M \) is said to be a singular point if \(\phi(t, x) = x \) for all \(t \in \mathbb{R} \). \(\phi \) is said to be non-singular if there is no singular point. An orbit of \(\phi \) passing \(x \) is a subset \(\{\phi(t, x) | t \in \mathbb{R}\} \). If there is \(t \neq 0 \) such that \(\phi(t, x) = x \), the orbit is said to be closed.

Let \(f \) be a map of \(S^1 \) into a space \(M \) and \(p: \mathbb{R} \to S^1 \) be the usual universal covering defined by \(t \to e^{2\pi i t} \), then we shall denote \(f \circ p = f \).

Theorem. Let \(M \) be an orientable closed 3-manifold and \(f: S^1 \to M \) be an embedding. Then, there exist a flow \(\phi: \mathbb{R} \times M \to M \) and \(x \in M \) such that \(\phi(t, x) = f(t) \) for all \(t \in \mathbb{R} \).

Proof. Denote the tangent bundle of \(M \) by \(T(M) \). Since, by [2] (Satz 21), \(M \) is parallelizable, we may assume \(T(M) = M \times \mathbb{R}^3 \). Consider the \((\mathbb{R} \setminus \{0\})\)-bundle \(T(M) \), \(\xi: M \times (\mathbb{R}^3 \setminus \{0\}) \to M \) over \(M \) associated to tangent bundle. We define a map \(g: f(S^1) \to T(M) \) as follows: for \(x \in f(S^1) \), \(g(x) = \frac{d}{dt}(f(t)) \) where \(t \) is any number such that \(f(t) = x \). \(g \) is well-defined. Since \(f \) is an embedding, \(g \) is a cross-section of \(\xi \) over \(f(S^1) \). We will extend \(g \) to a cross-section of \(\xi \) over \(M \).

We may take a tubular neighborhood \(U \) of \(f(S^1) \) coordinated as follows:

\[U = \{(x, r, \theta) | x \in f(S^1), \ 0 \leq r \leq 1, \ 0 \leq \theta < 2\pi\} \]

with

\[(x, 0, \theta) = (x, 0, 0) \text{ for all } x \text{ and } \theta. \]

Since \(\pi((\mathbb{R}^3 \setminus \{0\})) \cong \pi(S^3) = 0 \), we have a homotopy \(F \) of \(q \circ g \) as follows, where \(q \) is the projection into the second factor \(M \times (\mathbb{R}^3 \setminus \{0\}) \to \mathbb{R}^3 \setminus \{0\} :

* Kôbe University.
** The University of British Columbia.
Next, we define a map $G : M \to \mathbb{R}^3 - \{0\}$, as follows.

\[
G(x, r, \theta) = \begin{cases}
q \circ g(x) & \text{if } 0 \leq r < \frac{1}{2} \\
F(x, 2r - 1) & \text{if } \frac{1}{2} \leq r \leq 1 \\
* & \text{if } y \in U.
\end{cases}
\]

G is continuous. By an approximation keeping fixed on $f(S^1)$, we may make G a smooth map \tilde{G}. If we put $(y, \tilde{G}(y)) = \tilde{g}(y)$, $\tilde{g} : M \to \mathbb{R}^3 - \{0\}$ is a cross-section of ξ, and also, it is an extension of g.

We may assume that \tilde{g} is a non-zero vector field on M extending g. The flow, obtained by integrating \tilde{g}, is the desired one. This proves the Theorem.

Let l be an embedding \(\{ S_1^1 \cup \cdots \cup S_n^1 \} \to M \), where S_1^1 is a circle and $S_1^1 \cup \cdots \cup S_n^1$ is the disjoint union, then we call l a link in M and each $l(S_i)$ a component of the link.

Corollary. For any link l of an orientable closed 3-manifold M, there exists a non-singular flow ϕ of M such that each component of l coincides with a certain orbit of ϕ.

The proof is similar to the one of the Theorem.

Remark. There is a well-known Seifert’s Conjecture which states that every non-singular flow on S^3 has a closed orbit. The Theorem states that if we solve the Seifert’s Conjecture we must take it into consideration that any knot may come out as the closed orbit.

References
