29. A Characterization of Artinian l-Semigroups

By Kentaro MURATA

Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro Shoda, M. J. A., Feb. 12, 1971)

The aim of the present note is to generalize Artin's well-known equivalence relation (quasi-equal relation) introduced in commutative rings for some sorts of commutative *l*-semigroups,¹⁾ and to give a characterization of such *l*-semigroups by a system of valuations defined on some quotient *l*-semigroups with compactly generated cones.

1. Let S be a conditionally complete and commutative *l*-semigroup with unity quantity e, and let I be the cone (integral part) of S. We suppose throughout this paper that I is compactly generated by a compact generator system Σ containing e (cf. [7]), and that S is a quotient semi-group of I by Σ , that is, every element x of Σ is invertible in S and every element c of S can be written as $c=ax^{-1}$, where $a \in I$ and $x \in \Sigma$. If a compactly generated *l*-semigroup I with a compact generator system Σ is given, we can prove that there exists a quotient *l*-semigroup of I by Σ , if and only if the following two conditions hold for I and Σ : (i) for any two elements x and y of Σ , there exists an element a of I such that axy is in Σ , and (ii) every element of Σ satisfies the cancellation law. The lattice-structure is naturally introduced in the quotient semigroup, and such a quotient *l*-semigroup is uniquely determined within isomorphisms over I.

Now it can be proved that the join-semi-lattice generated by Σ is also a compact generator system of *I*. Hence we may assume, if necessary, that Σ is closed under finite join-operation. If, in particular, *S* forms a group, we can show that the maximal condition holds for the elements of *I*. By using this, we can prove the following: in order that a quotient *l*-semigroup of *I* by Σ is a group, it is necessary and sufficient that every element of I has a prime factorization and every prime is divisor-free in the sense of the partial-order.

2. In this and the next sections, we let S be a quotient *l*-semigroup (conditionally complete) of the cone I by a compact generator system Σ of I. The multiplicative group generated by Σ in S will be denoted by G. Then the element of S can be represented as a supremum of a subset of G. For any two elements a, b of S, the set $X_{a,b}$

¹⁾ Artin's equivalence relation has been introduced in various *l*-semigroups by many authors [1], [4], [2], [5], [3], etc. A systematic study was given in [4] and [5].

consisting of the elements x with $bx \leq a$ and $x \in \Sigma$ is not void, and bounded (upper). Hence we can define $a: b \equiv \sup X_{a,b}$, which is called a residual of a by b. Then we have the followings: $(\bigcap_{\lambda=1}^{n} a_{\lambda}): b$ $= \bigcap_{\lambda=1}^{n} (a_{\lambda}; b), a: (\bigcup_{\lambda=1}^{n} b_{\lambda}) = \bigcap_{\lambda=1}^{n} (a; b_{\lambda}), a: (bb') = (a; b); b'), etc.$ In particular $a: u = au^{-1}$ for $a \in S$ and $u \in G$. Now it can be shown easily that every element a of S has an upper bound in G. a^* will mean the infimum of the upper bounds in G of a. Then we have $a \le a^*$, $a^{**} = a^*$, and $a \le b^*$ implies $a^* \le b^*$. An element a of S is called closed if $a^* = a$. Then we have that, if a is closed, a:b is closed for every element b of Moreover we can show that $a^* = e: (e:a), e: a = e:a^*$, and a^*b^* S. $\leq (ab)^*$ for every a, b of S. Now we can prove that the set S^* of all closed elements of S forms a quotient *l*-semigroup of $S^* \wedge I$ by Σ under the multiplication $a^* \circ b^* \equiv (a^*b^*)^* = (ab)^*$. The *l*-semigroup (S^*, \circ, \leq) is an extension of the po-group (G, \cdot, \leq) . S* coincides with the set of all $\inf A$, where A is a non-void subset of G.

We now introduce an equivalence relation \sim , called Artin-equivalence (quasi-equality) as follows: $a \sim b \iff a^* = b^*$ ($\iff e: a = e: b$). Then the set of the classes S^{\wedge} obtained by the Artin-equivalence forms an *l*-semigroup naturally, and which is isomorphic to (S^*, \circ, \leq) as *l*semigroups.

The cone I of a quotient l-semigroups called *integrally closed* with respect to Σ , if $xu^n \in I$, $x \in \Sigma$, $u \in G$ $(n=0,1,2,\cdots)$ imply $u \in I$. A quotient l-semigroup S is called *Artinian*, if $S^* = (S^*, \circ, \leq)$ forms an l-group. A closed element p of I is called (\circ) -prime, if whenever $a \circ b \leq p$ implies $a \leq p$ or $b \leq p$ for closed elements a, b in I. It is then easily verified that a closed element p is (\circ) -prime if and only if $ab \leq p$ implies $a \leq p$ or $b \leq p$ for $a, b \in I$. Hence (\circ) -primes are closed primes. Moreover we can prove that a closed element p is (\circ) -prime if and only if $xy \leq p$ implies $x \leq p$ or $y \leq p$ for $x, y \in \Sigma$. Then the following three conditions are equivalent to one another:

(1) S is Artinian.

(2) I is integrally closed with respect to Σ .

(3) S^* (or S^{\wedge}) is isomorphic to the l-group $[Z, \mathfrak{P}]$ consisting of all $(\alpha_p | p \in \mathfrak{P})$ such that $\alpha_p \in Z$ (the ring of the integers) and $\alpha_p = 0$ for almost all $p \in \mathfrak{P}$ (the set of the (\circ) -primes).

If S is an Artinian *l*-semigroup, every (\circ) -prime is prime, and every prime contains a (\circ) -prime. Moreover we have that an element p is (\circ) -prime if and only if p contains no prime except p itself.

3. In this section we assume that Σ is closed under finite joinoperation and multiplication. If the product of any two elements of Σ can be written as a join of a finite number of elements of Σ ([6]), then evidently Σ is closed under multiplication. In this case we can show that every element of G is compact, and G is a compact generator system of S.

A map $x \rightarrow v(x)$ from $G = \{x, y, z, \dots\}$ into Z is called here a valuation of S, if it satisfies the following three conditions:

- (a) $x \le y$ implies $v(x) \ge v(y)$.
- (b) v(xy) = v(x) + v(y).
- (c) $v(x \cup y) = Min\{v(x), v(y)\}.$

If S is an Artinian *l*-semigroup, every element of S^* has the (\circ)prime factorization, and in particular so is the element of $G: x = \prod p^{n_p}$, Then the map $x \rightarrow v_p(x) \equiv n_p$ from G into Z satisfies the above $n_p \in \mathbf{Z}$. three conditions. For every element a of S (not necessarily Artinian), we let U_a be the set of the elements such that $x \le a$ and $x \in G$. v(a)will mean Min $\{v(x) | x \in U_a\}$, and which is called a valuation of *a*. Then we can show that for arbitrary sup-expression $a = \sup A, A \subseteq G$, of any fixed element $a \in S$, there exists an element z in A such that v(a) = v(z). By using this, we can show that the conditions (a), (b), and (c) hold for the elements of S. Let \mathfrak{P} be the set of the (\circ)-prime elements in I, and let $I(v_p)$ be the elements a such that $a \in S$ and $v_p(a) = Min \{v_p(x) | x \in U_a\}$ ≥ 0 . Then we can prove that if S is Artinian, then $I = \bigwedge_{p \in \mathfrak{P}} I(v_p)$.²⁾ Let S be Artinian. Then the set of (•)-primes p with $v_p(a) \neq 0$ is finite for an arbitrary fixed element a of S. Moreover, if $p_1 \neq p_2$ in \mathfrak{P} , there exists an element x such that $x \in \Sigma$, $v_{p_1}(x) > 0$ and $v_{p_2}(x) = 0$. In fact, such an element x can be taken as $x \leq p_1$ and $x \leq p_1 \circ p_2$.

4. Our purpose of this section is to characterize the Artinian *l*-semigroup by the properties mentioned in the last part of Section 3. The results obtained in this section are analogous to those of [8; Chap. 4].

Let L be an *l*-semigroup with an identity e. We now suppose that L is conditionally complete and compactly generated by $G = \{x \in L \mid xx' = e \text{ for some } x' \in L\}$, and G is closed under finite join-operation. A map v from L into Z is called a valuation of L, if it satisfies the three properties (a), (b), and (c) in Section 3. We now assume that there exists a family $\mathfrak{B} = \{v\}$ of valuations which satisfies the following three conditions:

(A) L is a quotient *l*-semigroup of $I = \wedge_{v \in \mathfrak{B}} I(v)$ by $I_{g} = I \wedge G$, where I(v) is the set of the elements a of L such that $v(a) \ge 0$.

(B) The set consisting of v in \mathfrak{V} with $v(a) \neq 0$ is finite for each element a of L.

(C) If $v_1 \neq v_2$ in \mathfrak{V} , there exists an element x such that $x \in I_G$, $v_1(x) > 0$ and $v_2(x) = 0$.

Let v_0, v_1, \dots, v_n be any finite number of valuations of \mathfrak{V} . Then

²⁾ \wedge means intersection.

we can show that (1) there exists an element $x \in I_{\alpha}$ such that $v_0(x) = 0$ and $v_i(x) > 0$ for $i=1, \dots, n$, and (2) there exists $y \in I_G$ such that $v_0(y)$ >0 and $v_i(y)=0$ for $i=1, \dots, n$. Moreover we can show that for a finite number of valuations v_1, \dots, v_m and for any fixed element a of L, there exists an element u of G such that $u \leq a$, and $v_i(a) = v_i(u)$ for $i=1, \dots, m$. By using this we obtain that v((e:a):a)=0 for every element $a \in L$ and every valuation $v \in \mathfrak{V}$, where the residuation in L is defined similarly as in Section 2. An element c of L is said to be low if v(c)=0 for all $v \in \mathfrak{V}$. Then we have that (1) c is low if and only if e: c = e, (2) if c is low, then e: ac = e: a for every $a \in L$, and (3) if every element of I is compact, e is the only low element of L. In L Artinequivalence is defined in the obvious way. Then we can prove that aand b are Artin-equivalent if and only if v(a) = v(b) for all $v \in \mathfrak{B}$. \mathfrak{B} is said to be normal, if there exists an element u of G such that v(u)=1for each valuation $v \in \mathfrak{V}$. Now let \mathfrak{V} be normal, let v, v_1, \dots, v_n be a finite number of valuations in \mathfrak{V} such that $v \neq v_i$ for $i=1, \dots, n$, and let $v(u_0) = 1, u_0 \in G$. Next we let v_{n+1}, \dots, v_m be the set of all valuations such that $v(u_0) \neq 0$, $v_j \neq v_1, \dots, v_n$ for $j=n+1, \dots, m$. Since we can choose an element u of I_G such that $v(u)=0, v_1(u)>0, \dots, v_n(u)>0$, $v_{n+1}(u) > 0, \dots, v_m(u) > 0$, we obtain $v_i(u^{\rho}u_0) > 0$ for a sufficiently large integer ρ $(i=1,\dots,m)$. Then it can be shown that $u^{\rho}u_{0} \leq e$. Hence, by taking elements x_k of I_g such that $v_k(x_k) = 0$, $v(x_k) > 1$, and $v_j(x_k) > 0$ $(j \neq k, 1 \leq k \leq n)$, we can prove that the element $t = \bigcup_{k=1}^{n} x_k \cup u^e u_0$ is in I_{G} and satisfies v(t)=1, $v_{i}(t)=0$ for $i=1, \dots, n$. Moreover, for any fixed $v \in \mathfrak{V}$, we can show the existence of the element $s(v) \in I_G$ such that v(s(v))=1 and v'(s(v))=0 for all v' with $v' \neq v$, $v' \in \mathfrak{V}$. By using the above facts, we can prove that L is an Artinian l-semigroup, that is, the set L^{\wedge} of all classes obtained by the Artin-equivalence relation forms an l-group, which is isomorphic to (Z, \mathfrak{V}) as l-groups, where (Z, \mathfrak{V}) is the l-group consisting of all $(\alpha_v | v \in \mathfrak{V})$ such that $\alpha_v \in Z$ and $\alpha_v = 0$ for almost all $v \in \mathfrak{V}$. Hence L is Artinian if and only if it has a system of valuations with the properties (A), (B) and (C). Now it can be shown that $p_v = \sup \{u \in I(v) \land G \mid v(u) > 0\}$ is a prime element in I(v), and $p(v) = p_v \cap e$ is a prime element in I. Since $p(v_1) \neq p(v_2)$ for $v_1 \neq v_2$, and $p(v) \sim s(v)$ (Artin-equivalence), we obtain that every class in L^{\wedge} is factored into a product of a finite number of $K(p(v_i))$, the class containing $p(v_i)$, and the factorization is unique apart from its commutativity. In other words, L^{\wedge} is the (restricted) direct product $\prod \bigotimes_{v \in \mathfrak{V}} K(p(v)).$

References

- K. Asano and K. Murata: Arithmetical ideal theory in semigroups. J. Inst. Polytec. Osaka City Univ., 4, 9-33 (1953).
- [2] P. Dubreil: Introduction à la Théorie des demi-groups Ordnnés. Convegno Ital.-Franc., Algebra Astratta, 1-33 (Padova, 1956).
- [3] L. Fuchs: Partially Ordered Algebraic Systems, International Series of Monographs in Pure and Applied Mathematics, 28 (1963).
- [4] I. Molinaro: Généralisation de l'equivalence d'Artin. C. R. Acad. Sci. Paris, 283, 1284-1286, 1767-1769 (1954).
- [5] ——: Demi-groupes résidutifs. Thèse (Paris, 1956).
- [6] K. Murata: On Nilpotent-free Multiplicative systems. Osaka Math. J., 14, 53-70 (1962).
- [7] —: Primary decomposition of elements in compactly generated integral multiplicative lattices. Osaka J. Math., 7, 97-115 (1970).
- [8] O. F. G. Schilling: The Theory of Valuations, Mathematical Surveys. IV. Amer. Math. Soc. (1950).