29. A Characterization of Artinian l-Semigroups

By Kentaro Murata
Department of Mathematics, Yamaguchi University
(Comm. by Kenjiro Shoda, M. J. a., Feb. 12, 1971)

The aim of the present note is to generalize Artin's well-known equivalence relation (quasi-equal relation) introduced in commutative rings for some sorts of commutative l-semigroups, ${ }^{1)}$ and to give a characterization of such l-semigroups by a system of valuations defined on some quotient l-semigroups with compactly generated cones.

1. Let S be a conditionally complete and commutative l-semigroup with unity quantity e, and let I be the cone (integral part) of S. We suppose throughout this paper that I is compactly generated by a compact generator system Σ containing e (cf. [7]), and that S is a quotient semi-group of I by Σ, that is, every element x of Σ is invertible in S and every element c of S can be written as $c=a x^{-1}$, where $a \in I$ and $x \in \Sigma$. If a compactly generated l-semigroup I with a compact generator system Σ is given, we can prove that there exists a quotient l-semigroup of I by Σ, if and only if the following two conditions hold for I and Σ : (i) for any two elements x and y of Σ, there exists an element a of I such that $a x y$ is in Σ, and (ii) every element of Σ satisfies the cancellation law. The lattice-structure is naturally introduced in the quotient semigroup, and such a quotient l-semigroup is uniquely determined within isomorphisms over I.

Now it can be proved that the join-semi-lattice generated by Σ is also a compact generator system of I. Hence we may assume, if necessary, that Σ is closed under finite join-operation. If, in particular, S forms a group, we can show that the maximal condition holds for the elements of I. By using this, we can prove the following: in order that a quotient l-semigroup of I by Σ is a group, it is necessary and sufficient that every element of I has a prime factorization and every prime is divisor-free in the sense of the partial-order.
2. In this and the next sections, we let S be a quotient l-semigroup (conditionally complete) of the cone I by a compact generator system Σ of I. The multiplicative group generated by Σ in S will be denoted by G. Then the element of S can be represented as a supremum of a subset of G. For any two elements a, b of S, the set $X_{a, b}$

1) Artin's equivalence relation has been introduced in various l-semigroups by many authors [1], [4], [2], [5], [3], etc. A systematic study was given in [4] and [5].
consisting of the elements x with $b x \leq a$ and $x \in \Sigma$ is not void, and bounded (upper). Hence we can define $a: b \equiv \sup X_{a, b}$, which is called a residual of a by b. Then we have the followings: $\left(\bigcap_{\lambda=1}^{n} a_{\lambda}\right): b$ $=\bigcap_{\lambda=1}^{n}\left(a_{\lambda}: b\right)$, $\left.a:\left(\bigcup_{\lambda=1}^{n} b_{\lambda}\right)=\bigcap_{\lambda=1}^{n}\left(a: b_{\lambda}\right), a:\left(b b^{\prime}\right)=(a: b): b^{\prime}\right)$, etc. In particular $a: u=a u^{-1}$ for $a \in S$ and $u \in G$. Now it can be shown easily that every element a of S has an upper bound in G. a^{*} will mean the infimum of the upper bounds in G of a. Then we have $a \leq a^{*}, a^{* *}=a^{*}$, and $a \leq b^{*}$ implies $a^{*} \leq b^{*}$. An element a of S is called closed if $a^{*}=a$. Then we have that, if a is closed, $a: b$ is closed for every element b of S. Moreover we can show that $a^{*}=e:(e: a), e: a=e: a^{*}$, and $a^{*} b^{*}$ $\leq(a b)^{*}$ for every a, b of S. Now we can prove that the set S^{*} of all closed elements of S forms a quotient l-semigroup of $S^{*} \wedge I$ by Σ under the multiplication $a^{*} \circ b^{*} \equiv\left(a^{*} b^{*}\right)^{*}=(a b)^{*}$. The l-semigroup (S^{*}, \circ, \leq) is an extension of the po-group $(G, \cdot, \leq) . S^{*}$ coincides with the set of all $\inf A$, where A is a non-void subset of G.

We now introduce an equivalence relation \sim, called Artin-equivalence (quasi-equality) as follows: $a \sim b \Longleftrightarrow a^{*}=b^{*} \quad(\Longleftrightarrow e: a=e: b$). Then the set of the classes S^{\wedge} obtained by the Artin-equivalence forms an l-semigroup naturally, and which is isomorphic to (S^{*}, \circ, \leq) as l semigroups.

The cone I of a quotient l-semigroups called integrally closed with respect to Σ, if $x u^{n} \in I, x \in \Sigma, u \in G(n=0,1,2, \cdots)$ imply $u \in I$. A quotient l-semigroup S is called Artinian, if $S^{*}=\left(S^{*}, \circ, \leq\right)$ forms an l-group. A closed element p of I is called (०)-prime, if whenever $a \circ b$ $\leq p$ implies $a \leq p$ or $b \leq p$ for closed elements a, b in I. It is then easily verified that a closed element p is (o)-prime if and only if $a b \leq p$ implies $a \leq p$ or $b \leq p$ for $a, b \in I$. Hence (\circ)-primes are closed primes. Moreover we can prove that a closed element p is (\circ)-prime if and only if $x y \leq p$ implies $x \leq p$ or $y \leq p$ for $x, y \in \Sigma$. Then the following three conditions are equivalent to one another:
(1) S is Artinian.
(2) I is integrally closed with respect to Σ.
(3) S^{*} (or S^{\wedge}) is isomorphic to the l-group [$\left.Z, \mathfrak{R}\right]$ consisting of all ($\alpha_{p} \mid p \in \mathfrak{\beta}$) such that $\alpha_{p} \in \boldsymbol{Z}$ (the ring of the integers) and $\alpha_{p}=0$ for almost all $p \in \mathfrak{P}$ (the set of the (०)-primes).

If S is an Artinian l-semigroup, every (\circ)-prime is prime, and every prime contains a (o)-prime. Moreover we have that an element p is (०)-prime if and only if p contains no prime except p itself.
3. In this section we assume that Σ is closed under finite joinoperation and multiplication. If the product of any two elements of Σ can be written as a join of a finite number of elements of Σ ([6]), then evidently Σ is closed under multiplication. In this case we can
show that every element of G is compact, and G is a compact generator system of S.

A map $x \rightarrow v(x)$ from $G=\{x, y, z, \cdots\}$ into Z is called here a valuation of S, if it satisfies the following three conditions:
(a) $x \leq y$ implies $v(x) \geq v(y)$.
(b) $v(x y)=v(x)+v(y)$.
(c) $\quad v(x \cup y)=\operatorname{Min}\{v(x), v(y)\}$.

If S is an Artinian l-semigroup, every element of S^{*} has the (०)prime factorization, and in particular so is the element of $G: x=\Pi$ П $p^{n_{p}}$, $n_{p} \in \boldsymbol{Z}$. Then the map $x \rightarrow v_{p}(x) \equiv n_{p}$ from G into \boldsymbol{Z} satisfies the above three conditions. For every element a of S (not necessarily Artinian), we let U_{a} be the set of the elements such that $x \leq a$ and $x \in G . \quad v(a)$ will mean $\operatorname{Min}\left\{v(x) \mid x \in U_{a}\right\}$, and which is called a valuation of a. Then we can show that for arbitrary sup-expression $a=\sup A, A \subseteq G$, of any fixed element $a \in S$, there exists an element z in A such that $v(a)=v(z)$. By using this, we can show that the conditions (a), (b), and (c) hold for the elements of S. Let $ß$ be the set of the (\circ)-prime elements in I, and let $I\left(v_{p}\right)$ be the elements a such that $a \in S$ and $v_{p}(\alpha)=\operatorname{Min}\left\{v_{p}(x) \mid x \in U_{a}\right\}$ ≥ 0. Then we can prove that if S is Artinian, then $I=\wedge_{p \in \mathfrak{B}} I\left(v_{p}\right) .{ }^{2)}$ Let S be Artinian. Then the set of (\circ)-primes p with $v_{p}(a) \neq 0$ is finite for an arbitrary fixed element a of S. Moreover, if $p_{1} \neq p_{2}$ in \mathfrak{P}, there exists an element x such that $x \in \Sigma, v_{p_{1}}(x)>0$ and $v_{p_{2}}(x)=0$. In fact, such an element x can be taken as $x \leq p_{1}$ and $x \not \leq p_{1} \circ p_{2}$.
4. Our purpose of this section is to characterize the Artinian l semigroup by the properties mentioned in the last part of Section 3. The results obtained in this section are analogous to those of [8; Chap. 4].

Let L be an l-semigroup with an identity e. We now suppose that L is conditionally complete and compactly generated by $G=\left\{x \in L \mid x x^{\prime}\right.$ $=e$ for some $\left.x^{\prime} \in L\right\}$, and G is closed under finite join-operation. A map v from L into Z is called a valuation of L, if it satisfies the three properties (a), (b), and (c) in Section 3. We now assume that there exists a family $\mathfrak{B}=\{v\}$ of valuations which satisfies the following three conditions:
(A) L is a quotient l-semigroup of $I=\wedge_{v \in \mathfrak{B}} I(v)$ by $I_{G}=I \wedge G$, where $I(v)$ is the set of the elements α of L such that $v(a) \geq 0$.
(B) The set consisting of v in \mathfrak{B} with $v(\alpha) \neq 0$ is finite for each element a of L.
(C) If $v_{1} \neq v_{2}$ in \mathfrak{B}, there exists an element x such that $x \in I_{G}$, $v_{1}(x)>0$ and $v_{2}(x)=0$.

Let $v_{0}, v_{1}, \cdots, v_{n}$ be any finite number of valuations of \mathfrak{B}. Then

[^0]we can show that (1) there exists an element $x \in I_{G}$ such that $v_{0}(x)=0$ and $v_{i}(x)>0$ for $i=1, \cdots, n$, and (2) there exists $y \in I_{G}$ such that $v_{0}(y)$ >0 and $v_{i}(y)=0$ for $i=1, \cdots, n$. Moreover we can show that for a finite number of valuations v_{1}, \cdots, v_{m} and for any fixed element a of L, there exists an element u of G such that $u \leq a$, and $v_{i}(\alpha)=v_{i}(u)$ for $i=1, \cdots, m$. By using this we obtain that $v((e: a): a)=0$ for every element $a \in L$ and every valuation $v \in \mathfrak{B}$, where the residuation in L is defined similarly as in Section 2. An element c of L is said to be low if $v(c)=0$ for all $v \in \mathfrak{B}$. Then we have that (1) c is low if and only if $e: c=e$, (2) if c is low, then $e: a c=e: a$ for every $a \in L$, and (3) if every element of I is compact, e is the only low element of L. In L Artinequivalence is defined in the obvious way. Then we can prove that a and b are Artin-equivalent if and only if $v(a)=v(b)$ for all $v \in \mathfrak{B}$. \mathfrak{B} is said to be normal, if there exists an element u of G such that $v(u)=1$ for each valuation $v \in \mathfrak{B}$. Now let \mathfrak{B} be normal, let v, v_{1}, \cdots, v_{n} be a finite number of valuations in \mathfrak{B} such that $v \neq v_{i}$ for $i=1, \cdots, n$, and let $v\left(u_{0}\right)=1, u_{0} \in G$. Next we let v_{n+1}, \cdots, v_{m} be the set of all valuations such that $v\left(u_{0}\right) \neq 0, v_{j} \neq v_{1}, \cdots, v_{n}$ for $j=n+1, \cdots, m$. Since we can choose an element u of I_{G} such that $v(u)=0, v_{1}(u)>0, \cdots, v_{n}(u)>0$, $v_{n+1}(u)>0, \cdots, v_{m}(u)>0$, we obtain $v_{i}\left(u^{\rho} u_{0}\right)>0$ for a sufficiently large integer $\rho(i=1, \cdots, m)$. Then it can be shown that $u^{\rho} u_{0} \leq e$. Hence, by taking elements x_{k} of I_{G} such that $v_{k}\left(x_{k}\right)=0, v\left(x_{k}\right)>1$, and $v_{j}\left(x_{k}\right)>0$ $(j \neq k, 1 \leq k \leq n)$, we can prove that the element $t=\bigcup_{k=1}^{n} x_{k} \cup u^{\rho} u_{0}$ is in I_{G} and satisfies $v(t)=1, v_{i}(t)=0$ for $i=1, \cdots, n$. Moreover, for any fixed $v \in \mathfrak{B}$, we can show the existence of the element $s(v) \in I_{G}$ such that $v(s(v))=1$ and $v^{\prime}(s(v))=0$ for all v^{\prime} with $v^{\prime} \neq v, v^{\prime} \in \mathfrak{B}$. By using the above facts, we can prove that L is an Artinian l-semigroup, that is, the set L^{\wedge} of all classes obtained by the Artin-equivalence relation forms an l-group, which is isomorphic to ($\boldsymbol{Z}, \mathfrak{B}$) as l-groups, where $(\boldsymbol{Z}, \mathfrak{B})$ is the l-group consisting of all $\left(\alpha_{v} \mid v \in \mathfrak{B}\right)$ such that $\alpha_{v} \in \boldsymbol{Z}$ and $\alpha_{v}=0$ for almost all $v \in \mathfrak{B}$. Hence L is Artinian if and only if it has a system of valuations with the properties (A), (B) and (C). Now it can be shown that $p_{v}=\sup \{u \in I(v) \wedge G \mid v(u)>0\}$ is a prime element in $I(v)$, and $p(v)=p_{v} \cap e$ is a prime element in I. Since $p\left(v_{1}\right) \neq p\left(v_{2}\right)$ for $v_{1} \neq v_{2}$, and $p(v) \sim s(v)$ (Artin-equivalence), we obtain that every class in L^{\wedge} is factored into a product of a finite number of $K\left(p\left(v_{i}\right)\right)$, the class containing $p\left(v_{i}\right)$, and the factorization is unique apart from its commutativity. In other words, L^{\wedge} is the (restricted) direct product $\Pi \otimes_{v \in \mathfrak{B}} K(p(v))$.

References

[1] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. J. Inst. Polytec. Osaka City Univ., 4, 9-33 (1953).
[2] P. Dubreil: Introduction à la Théorie des demi-groups Ordnnés. Convegno Ital.-Franc., Algebra Astratta, 1-33 (Padova, 1956).
[3] L. Fuchs: Partially Ordered Algebraic Systems, International Series of Monographs in Pure and Applied Mathematics, 28 (1963).
[4] I. Molinaro: Généralisation de l'equivalence d'Artin. C. R. Acad. Sci. Paris, 283, 1284-1286, 1767-1769 (1954).
[5] ——: Demi-groupes résidutifs. Thèse (Paris, 1956).
[6] K. Murata: On Nilpotent-free Multiplicative systems. Osaka Math. J., 14, 53-70 (1962).
[7] -: Primary decomposition of elements in compactly generated integral multiplicative lattices. Osaka J. Math., 7, 97-115 (1970).
[8] O. F. G. Schilling: The Theory of Valuations, Mathematical Surveys. IV. Amer. Math. Soc. (1950).

[^0]: 2) \wedge means intersection.
