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1 Let G be a locally compact group, and/2 be the set of equiva-
lence classes of unitary representations of G, dimensions of which are
lower than a sufficiently large fixed cardinal number (for instance the
large one of countable infinite or dim L(G)). Then we can introduce
a product operation (R) in /2 by the Kronecker product of representa-
tions, and the addition operation in t9 by the direct sum of represen-
tations (We allow infinite discrete direct sum). So that, a ring-like
structure is given in 9.

Now we shall call a subset an ideal in t9 when
i) is closed with respect to the operation .

ii) If w is in then any subrepresentation of w is in .
iii) For any w in and any Wo in [2, Wo(R)W is in .
Moreover, we shall call an ideal in 9 is prime when
iv) If wl, o)2 are both disjoint to any representations in , in the

sense of G. W. Mackey [1], then w(R)w2 too.
As is well-known, Kronecker product of any w in 9 and the regular

representation is unitary equivalent to a multiple of . So that, the
set of classes of all subrepresentations of multiples of R gives
the smallest non-empty (but in general not prime) ideal in/2.

On the other hand, in the previous paper [2], we gave examples
of non-trivial operator fields {T(w)} over 9 which commute with the
both of operations (R) and , and T()=0 (p. 225, Example 3 and p. 226,
Example 5). There exists close connection between such an operator
field and non-trivial prime ideal.

The purpose of this paper is to show this connection, and to give
an example of non-trivial prime ideal in 9 as an extension of the ex-
amples in the paper [2]. And this leads to a new proof of that every
unitary irreducible representations of compact group are finite dimen-
sional.

2. Now we shall give the correspondence between non-trivial
prime ideals in 9 and a family of non-zero operator fields {T(w)} over
/2 which commute with the both of operations (R) and and T()=0,
under the additional condition, that T(w)-(O) is G-invariant for any w
in
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For given such an operator field {T(w)}, it is easy to see that,
--{w e [2 / T(w)--0} ( 1 )

is a non-trivial prime ideal in t9 (cf. the proof of Lemma 4.4. in [2]).
Conversely, if a non-trivial prime ideal in 9 is given, we can

construct an operator field which satisfies (1) as follows. At first, we
fix an arbitrary element g in G. For any w in /2, we can decompose
it as www, where w is disjoint from any representation in
And put

T(w)-- Uq(wx)@O(w.).
From above arguments, contains , so it is easily shown that the
operator field {T(w)} over ?2 is required one.

3. Let be the set of classes of unitary representations which
don’t contain any finite dimensional subrepresentation as a discrete
component. Then,

Theorem. is a prime ideal in
Before stating the proof of the theorem, we shall show the follow-

ings.
Lemma 1. If w(R)w2 has a finite dimensional subrepresentation

as a discrete component, then the both of w and w. have the same
properties.

To prove Lemma 1, we use the result of Lemma 2 which is a special
case of Lemma 1.

Lemma 2. If w(R)w contains the trivial representation 1 as a
discrete component, then the both of w and w have finite dimensional
subrepresentations as discrete components.

Proof. 1) Let the spaces of representations w, w be (, (. re-
spectively. Using G. W. Mackey’s construction [1], the space of rep-
resentation w(R)w can be considered as the space of Hilbert-Schmidt
operators A from 3r into (, and the representation operator of g is
given by A-UA(U)*, corresponding to the operators U, U of w,
respectively. (, mean the adjoint representation of w, U respec-
tively, cf. G. W. Mackey [1].)

2) Let A be the Hilbert-Schmidt operator which corresponds to
1-component in w(R)w by the assumption, then,UA(U) =A, for any g in G. ( 2 )
That is, the trace class operator A*A on ( satisfies,

A*A(U)*--(U)*A*A, for any g in G. ( 3 )
A*A is not zero, and any eigenspce of A’A, corresponding to non-zero
eigenvalue, is finite dimensional. And it is easy to see from (3)that
each eigenspace, is invariant with respect to (U)*. That is, w contains
a finite dimensional subrepresentation as a discrete component.

3) w(R)w, is equivalent to w(R)w, so we can exchange the roles of
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w and 0)2, then we obtain the result about w.
Proof of Lemma 1. If w(R)w2 contains a finite dimensional sub-

representation D as a discrete component, so w(R)w2(R)(R)2 contains
D(R)D as a discrete component. But from the theory of finite dimen-
sional representations, D(R)D contains the trivial representation 1 as a
discrete component. That is, w(R)w2(R)(R)2 contains the trivial rep-
resentation as a discrete component.

From the associativity of Kronecker products, we can use the result
of Lemma 2 to the pair w and w2(R)(V(R)2, so the required result for w
is given. The result for (o2 is easily deduced by exchanging the role
of Wl and 02 as above.

Proof of Theorem. Evidently F satisfies i), ii) and iv). And the
property iii) is shown by Lemma 1 directly.

4. Corollary. Every irreducible unitary representations of com-
pact groups are finite dimensional.

Proof. It is enough to show that is empty set for compact
group. Indeed, if not, since is the smallest non-empty ideal, must
contain Y. But for a compact group, contains trivial representation
1 as a discrete component (in fact, the constant function is in L(G)).
So has to contain 1. This contradicts to the definition of r.
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