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79. On a Convergence Theorem for Sequences
of Holomorphic Functions

By Yoshikuni NAKAMURA and Niro YANAGIHARA
(Comm. by Kinjiré KUNUGI, M. J. A., April 12, 1971)

Let D be the unit disk {|z|<1} and C be its circumference {jz|=1}.
For two numbers «, 3,0<a<S=2r, we put
S(a, B)=the sector {z=re’; a<O0<B,0=<r<1},
C(a, B)=the arc {z=¢"; a <0< B},
Sz(a, B=S(a, p)N{2|<R},0<R<1,
Cr(a, B)=the arc {z=Re*; a <0< B}
We say that a function f(2), holomorphic on S(a, 8), belongs to
a class N, ; if

mr, f3 a, B)= j *log* | f(re?)|df is bounded for 0<r<1.

The class N ,,, is denoted simply by N and called the class of functions
of bounded characteristic [1].

A function f(z), holomorphic i S(a, B), is said to belong to a class
N% 4 if f(2) € N q1s5,5-5 for every d,0<d<(a+ B)/2.

It is proved in [2], as a localization of the Fatou’s theorem, that

A function f(z), holomorphic in S(a, ), can be written as a quo-
tient of two bounded functions in S(a+0d,8—0) for every 4,0<0
<(a+Pp)/2, if and only if f(2) belongs to N¢ ,. In particular, a func-
tion f(2) of the class N¥ ; has finite angular limits almost everywhere
on C(a, B), and if {z,} are the zeros of f(z) in S(a+0, —0)(0>0is
fixed), we have

(1 —|z,)) <oo.

In this note we will prove, using the method of [2], a localization
of the theorem of Khintchine-Ostrovski [3, p. 83], i.e.,

Theorem 1. Let a sequence {f,(2)}CN¥ , satisfy the conditions:

(i)

[10g" | rare a0 <k, 027 <1, (1)

where K s a constant independent of n and r.
(ii) There is a set ECC(a, B), meas(E)>0, on which {f.(e*)} con-
verges in measure, where f,(e’) denotes the radial limit of f,(2) at e®.
Then {f.(2)} converges to a function f(z) uniformly on any compact
set in S(a, B). f(2) is holomorphic in S(a, B) and has finite radial limit
f(e®) at almost every point e c C(a, B), and {f,(e!)} converges in
measure to f(et’) on the set E.
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Proof. We can find a 6 >0, such that
meas (E N C(a+0, §—0))>0.
Hence we can suppose the set E is contained in C(a+d, —0) for a
0>0.
Fix a point z,, 0<|z,|<1, arg [2,]=(a+ p)/2.
Suppose we could show that the best harmonic majorant u,(z) of
log* | f»(®)| in S(a+3d, B—0) is bounded at the point z,:
U (2) =K, (2)
where K, is a constant independent of «.
Then, if 2= p({) maps S(a+d, §—09) onto the unit disk |{|<1, z,= ©(0),
the function F,({)=f,(u(0)) satisfies
£ 2
["1og" IPutpe) dg= [ TTog* 17, ptoe ) dg
Su,(p0) =u,(2) =K,
and {F',(¢**)} converges in measure on the set £* = p(E), meas (E*)>0.
In that case, applying the original Khintchine-Ostrovski’s theorem to
{F.(0)} and comming back to {f,(z)}, we will have our result.

It suffices therefore to prove (2).
From
[10g 1 7re 100 s K
we can find a,, 8,, a<a,<a+0d, B—0=[,<p, such that

j "log* |fa(reien) | dr<K /9,

f log* | fa(ret)|dr <K 3.

Let wZ(z; e)(z € Sp(ay, B.), eCdSz(a,, 8,) be the harmonic measure of
the set e at the point z, with respect to Sp(a,, 8,). Let UZ(z) be a har-
monic function in Sg(«,, 8,) with boundary values

Uf(t)=10g+ |fn(t)|’ te aSR(an’ ﬁn)-

Then
UE() =LSR(%M log* |£4(8)| @R (z; dt).
By Carleman’s principle of ‘‘Gebietserweiterung’’ we have [1, p. 74]
UReos—[,  log"I£.0ldg,d),

where ¢,(t) is the argument of (t—z2,), measured from z,z¥, where z¥ is
the foot of the perpendicular to the radius Bg(a,):

Bg(a,)={z=re*; 0<r<R}.
We write |t —z,|=p, |2} —2)|=0a,,|2¥|=b,. Then

Uff(zogi(j +j +j )=i(11+12+13>.
T BR(an) BR(Bn) CR(an,Bn) T

If t ¢ Bg(a,) we have, writing t=re??,
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a,tan ¢, +b,=r.

Differentiating,
a, sec’ ¢, ,d@,=dr,
Thus
dg. <L dr, (3)
o

where a=|z* —z,|< |2 —2,|=0a,, in which z* is the foot of the perpen-
dicular to Bz(a+0) from z,.
Hence

[ ogIn.o1dgu0=| ® log* |fa(reiny| 9
BR(ap) 0 a

= L[ tog* I7,tret | dr=K as.
aJo

Similarly

* K
J15’1<.'(ﬁn) log™ | fu(D)] débs (t)é}l_g‘.

If t e Crlay,, Bo)
|dtf=(Rd6)=dp*+(pdg,) = o*dd,
hence there is a constant A, independent of R and », such that

do,<Adf. (4)
Therefore

L ( log* | fa(D)] dgp(D) = Arn log* | fr(Re*)|dI < AK.
R(an,Bn) an
Thus

UR(z) < (31-5+ai§+ A)K=K,.

As UZ(z) increases with R because of subharmonicity of log* | f,(2)|,
Un(zo)=11§n11 UX(z)=K,.
Since
1, () S U (?) in S(a+9, 8—0),
we have the inequality (2) and our proof is completed. Q.E.D.
Let m(r) >0 be a continuous function of r,0<r<1, lim m(r) < co.

r—1

The following lemma is easily proved.

Lemma. Let {f,(2)} be a sequence of functions holomorphic in D,
such that

r” log* | f,(ret?)|df <m(r), 0<r<1. (5)

Then {f,(2)} forms a normal family in the Montel’s sense in D.
Using this lemma, we can prove easily the following version of
Theorem 1 for a sequence of functions holomorphic in D.

Theorem 2. Let a sequence {f,(2)}, holomorphic in D, satisfy the
conditions:
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(i)
[ *log* | £u(ret)| dO <K, 0<r<1,

where K is a constant independent of n and r.
(ii) there is a set EC C(a, 8), meas (E) >0, on which the sequence
of radial limits {f,(e!")} converges in measure.
(iii)
r” log* | fa(re!)|df <m(r),0<r<1,
0

for a function m(r) as stated above.

Then, {f.(2)} converges to a function f(z) uniformly on any com-
pact set in D. f(z) ts holomorphic in D, has radial limit f(e*’) at almost
every point e’ € C(a, B), and {f,(e*")} converges to f(e'’) in measure on
the set E.

Next we will show: there is a set Ec[0,27], meas (E)>0, and a
sequence {f,(2)} of holomorphic functions in D, such that

(i)

L}og* [falret)|d0<K,0<r<1.

where K is a constant independent of n and 7.
(ii) each f,(2) has radial limit f,(e*’) at almost every point of C,
and {f.(e'’)} converges to 0 on the set E.
(iii)
r"log* | fa(ret?)|dd <m(r),0=r<1,
0

for a function m(r) as stated in Theorem 2, while {f,(2)} converges at
no point in D.

That is, the Khintchine-Ostrowski’s theorem can be localized to
integrals over an interval, but not to integrals over a set of positive
measure.

To see this, let f(2) be a holomorphic function in D such that

J(@)#0in D,
lim f(re!’)=0 for almost every 6,0<60<2x,

r—1

max | f(2)| <§1—m('r) for |2|=r, 0<r<1.
T

Such a function is constructed in [4].
For each pogitive integer N we set
Ey={0;0<60=<2rm,|f(re!)|<N for 0<r<1},
then
meas (C) EN) =27,

N=1
hence there is an N, meas (E ) >0.
Put
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E=EN)
fn(z)=(—~1)"f(z)+%, n=1,2,8, ..,

then E and {f,(2)} satisfy above conditions (i), (ii), (iii) obviously.
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