79. On a Convergence Theorem for Sequences of Holomorphic Functions

By Yoshikuni NAKAMURA and Niro YANAGIHARA

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1971)

Let D be the unit disk $\{|z| < 1\}$ and C be its circumference $\{|z|=1\}$. For two numbers $\alpha, \beta, 0 \leq \alpha < \beta \leq 2\pi$, we put

 $\begin{array}{l} S(\alpha, \beta) = \text{the sector } \{z = re^{i\theta} ; \alpha \leq \theta \leq \beta, 0 \leq r < 1\}, \\ C(\alpha, \beta) = \text{the arc } \{z = e^{i\theta} ; \alpha \leq \theta \leq \beta\}, \\ S_{R}(\alpha, \beta) = S(\alpha, \beta) \cap \{|z| < R\}, 0 < R < 1, \\ C_{R}(\alpha, \beta) = \text{the arc } \{z = Re^{i\theta} ; \alpha \leq \theta \leq \beta\}. \end{array}$

We say that a function f(z), holomorphic on $S(\alpha, \beta)$, belongs to a class $N_{(\alpha, \beta)}$ if

 $m(r, f; \alpha, \beta) = \int_{\alpha}^{\beta} \log^{+} |f(re^{i\theta})| d\theta \text{ is bounded for } 0 \leq r < 1.$

The class $N_{(0,2\pi)}$ is denoted simply by N and called the class of functions of bounded characteristic [1].

A function f(z), holomorphic in $S(\alpha, \beta)$, is said to belong to a class $N^*_{(\alpha,\beta)}$ if $f(z) \in N_{(\alpha+\delta,\beta-\delta)}$ for every $\delta, 0 < \delta < (\alpha+\beta)/2$.

It is proved in [2], as a localization of the Fatou's theorem, that

A function f(z), holomorphic in $S(\alpha, \beta)$, can be written as a quotient of two bounded functions in $S(\alpha+\delta,\beta-\delta)$ for every $\delta, 0 < \delta < (\alpha+\beta)/2$, if and only if f(z) belongs to $N^*_{(\alpha,\beta)}$. In particular, a function f(z) of the class $N^*_{(\alpha,\beta)}$ has finite angular limits almost everywhere on $C(\alpha, \beta)$, and if $\{z_n\}$ are the zeros of f(z) in $S(\alpha+\delta,\beta-\delta)(\delta>0$ is fixed), we have

$$\Sigma(1-|z_n|) < \infty.$$

In this note we will prove, using the method of [2], a localization of the theorem of Khintchine-Ostrovski [3, p. 83], i.e.,

Theorem 1. Let a sequence $\{f_n(z)\} \subset N^*_{(\alpha,\beta)}$ satisfy the conditions: (i)

$$\int_{\alpha}^{\beta} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq K, 0 \leq r < 1,$$
(1)

where K is a constant independent of n and r.

(ii) There is a set $E \subset C(\alpha, \beta)$, meas(E) > 0, on which $\{f_n(e^{i\theta})\}$ converges in measure, where $f_n(e^{i\theta})$ denotes the radial limit of $f_n(z)$ at $e^{i\theta}$.

Then $\{f_n(z)\}$ converges to a function f(z) uniformly on any compact set in $S(\alpha, \beta)$. f(z) is holomorphic in $S(\alpha, \beta)$ and has finite radial limit $f(e^{i\theta})$ at almost every point $e^{i\theta} \in C(\alpha, \beta)$, and $\{f_n(e^{i\theta})\}$ converges in measure to $f(e^{i\theta})$ on the set E. **Proof.** We can find a $\delta > 0$, such that

meas $(E \cap C(\alpha + \delta, \beta - \delta)) > 0.$

Hence we can suppose the set E is contained in $C(\alpha+\delta,\beta-\delta)$ for a $\delta>0$.

Fix a point $z_0, 0 < |z_0| < 1$, arg $[z_0] = (\alpha + \beta)/2$.

Suppose we could show that the best harmonic majorant $u_n(z)$ of $\log^+ |f_n(z)|$ in $S(\alpha + \delta, \beta - \delta)$ is bounded at the point z_0 :

$$u_n(z_0) \leq K_1,$$

where K_1 is a constant independent of $n.$ (2)

Then, if $z = \mu(\zeta)$ maps $S(\alpha + \delta, \beta - \delta)$ onto the unit disk $|\zeta| < 1, z_0 = \mu(0)$, the function $F_n(\zeta) = f_n(\mu(\zeta))$ satisfies

$$\int_{0}^{2\pi} \log^{+} |F_{n}(\rho e^{i\phi})| d\phi = \int_{0}^{2\pi} \log^{+} |f_{n}(\mu(\rho e^{i\phi})) d\phi \\ \leq u_{n}(\mu(0)) = u_{n}(z_{0}) \leq K_{1},$$

and $\{F_n(e^{i\phi})\}$ converges in measure on the set $E^* = \mu(E)$, meas $(E^*) > 0$. In that case, applying the original Khintchine-Ostrovski's theorem to $\{F_n(\zeta)\}$ and comming back to $\{f_n(z)\}$, we will have our result.

It suffices therefore to prove (2).

From

we can find
$$\alpha_n, \beta_n, \alpha < \alpha_n \le \alpha + \delta, \beta - \delta \le \beta_n < \beta$$
, such that

$$\int_0^1 \log^+ |f_n(re^{i\alpha_n})| dr \le K/\delta,$$

$$\int_0^1 \log^+ |f_n(re^{i\beta_n})| dr \le K/\delta.$$

Let $\omega_n^R(z; e)(z \in S_R(\alpha_n, \beta_n), e \subset \partial S_R(\alpha_n, \beta_n))$ be the harmonic measure of the set *e* at the point *z*, with respect to $S_R(\alpha_n, \beta_n)$. Let $U_n^R(z)$ be a harmonic function in $S_R(\alpha_n, \beta_n)$ with boundary values

$$U_n^{\scriptscriptstyle R}(t) = \log^+ |f_n(t)|, t \in \partial S_R(\alpha_n, \beta_n).$$

Then

$$U_n^{\mathbb{R}}(z) = \int_{\partial S_{\mathbb{R}}(\alpha_n,\beta_n)} \log^+ |f_n(t)| \, \omega_n^{\mathbb{R}}(z\,;\,dt).$$

By Carleman's principle of "Gebietserweiterung" we have [1, p. 74]

$$U_n^{\mathbb{R}}(z_0) \leq \frac{1}{\pi} \int_{\partial S_{\mathbb{R}}(\alpha_n,\beta_n)} \log^+ |f_n(t)| d\phi_n(t),$$

where $\phi_n(t)$ is the argument of $(t-z_0)$, measured from $\overline{z_0 z_n^*}$, where z_n^* is the foot of the perpendicular to the radius $B_R(\alpha_n)$:

$$B_R(\alpha_n) = \{z = re^{i\alpha_n}; 0 \leq r \leq R\}.$$

We write $|t-z_0| = \rho$, $|z_n^* - z_0| = a_n$, $|z_n^*| = b_n$. Then

$$U_{n}^{R}(z_{0}) \leq \frac{1}{\pi} \left(\int_{B_{R}(\alpha_{n})} + \int_{B_{R}(\beta_{n})} + \int_{C_{R}(\alpha_{n},\beta_{n})} \right) = \frac{1}{\pi} (I_{1} + I_{2} + I_{3}).$$

If $t \in B_R(\alpha_n)$ we have, writing $t = re^{i\theta}$,

$$a_n \tan \phi_n + b_n = r.$$
 Differentiating,

$$a_n \sec^2 \phi_n d\phi_n = dr$$
,

Thus

$$d\phi_n \leq \frac{1}{a} \, dr, \tag{3}$$

where $a = |z^* - z_0| \le |z_n^* - z_0| = a_n$, in which z^* is the foot of the perpendicular to $B_R(\alpha + \delta)$ from z_0 .

Hence

$$\begin{split} &\int_{B_{R}(\alpha_{n})}\log^{+}|f_{n}(t)|\,d\phi_{n}(t) \leq \int_{0}^{R}\log^{+}|f_{n}(re^{i\alpha_{n}})|\,\frac{dr}{a}\\ &\leq \frac{1}{a}\int_{0}^{1}\log^{+}|f_{n}(re^{i\alpha_{n}})|\,dr \leq K/a\delta. \end{split}$$

Similarly

$$\int_{B_{R}(\beta_{n})}\log^{+}|f_{n}(t)|\,d\phi_{n}(t)\leq\frac{K}{a\delta}.$$

If $t \in C_R(\alpha_n, \beta_n)$

$$|dt|^{2} = (Rd\theta)^{2} = d\rho^{2} + (\rho d\phi_{n})^{2} \ge \rho^{2} d\phi_{n}^{2}$$

hence there is a constant A, independent of R and n, such that $d\phi_n \leq A d\theta$.

Therefore

$$\log_{\mathcal{C}_{R}(\alpha_{n},\beta_{n})}\log^{+}|f_{n}(t)|\,d\phi_{n}(t) \leq A \int_{\alpha_{n}}^{\beta_{n}}\log^{+}|f_{n}(Re^{i\theta})|d\theta \leq AK.$$

Thus

$$U_n^{\scriptscriptstyle R}(z_0) \leq \left(\frac{1}{a\delta} + \frac{1}{a\delta} + A\right) K = K_1.$$

As $U_n^R(z)$ increases with R because of subharmonicity of $\log^+ |f_n(z)|$, $U_n(z_0) = \lim_{R \to 1} U_n^R(z_0) \leq K_1.$

Since

$$u_n(z) \leq U_n(z)$$
 in $S(\alpha + \delta, \beta - \delta)$,

we have the inequality (2) and our proof is completed. Q.E.D.

Let m(r) > 0 be a continuous function of $r, 0 \le r < 1$, $\lim_{r \to 1} m(r) \le \infty$.

The following lemma is easily proved.

Lemma. Let $\{f_n(z)\}$ be a sequence of functions holomorphic in D, such that

$$\int_{0}^{2\pi} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq m(r), 0 \leq r < 1.$$
(5)

Then $\{f_n(z)\}\$ forms a normal family in the Montel's sense in D.

Using this lemma, we can prove easily the following version of Theorem 1 for a sequence of functions holomorphic in D.

Theorem 2. Let a sequence $\{f_n(z)\}$, holomorphic in D, satisfy the conditions:

[Vol. 47,

(4)

350

No. 4]

(i)

$$\int_{\alpha}^{\beta} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq K, 0 \leq r < 1,$$

where K is a constant independent of n and r.

(ii) there is a set $E \subset C(\alpha, \beta)$, meas (E) > 0, on which the sequence of radial limits $\{f_n(e^{i\theta})\}$ converges in measure.

(iii)

$$\int_{0}^{2\pi} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq m(r), 0 \leq r < 1,$$

for a function m(r) as stated above.

Then, $\{f_n(z)\}$ converges to a function f(z) uniformly on any compact set in D. f(z) is holomorphic in D, has radial limit $f(e^{i\theta})$ at almost every point $e^{i\theta} \in C(\alpha, \beta)$, and $\{f_n(e^{i\theta})\}$ converges to $f(e^{i\theta})$ in measure on the set E.

Next we will show: there is a set $E \subset [0, 2\pi]$, meas (E) > 0, and a sequence $\{f_n(z)\}$ of holomorphic functions in D, such that

(i)

$$\int_{E} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq K, 0 \leq r < 1.$$

where K is a constant independent of n and r.

(ii) each $f_n(z)$ has radial limit $f_n(e^{i\theta})$ at almost every point of C, and $\{f_n(e^{i\theta})\}$ converges to 0 on the set E.

(iii)

$$\int_{0}^{2\pi} \log^{+} |f_{n}(re^{i\theta})| d\theta \leq m(r), 0 \leq r < 1,$$

for a function m(r) as stated in Theorem 2, while $\{f_n(z)\}$ converges at no point in D.

That is, the Khintchine-Ostrowski's theorem can be localized to integrals *over an interval*, but not to integrals over a set of positive measure.

To see this, let f(z) be a holomorphic function in D such that

 $f(z) \neq 0 \text{ in } D,$ $\lim_{r \to 1} f(re^{i\theta}) = 0 \text{ for almost every } \theta, 0 \leq \theta \leq 2\pi,$ $\max |f(z)| < \frac{1}{2\pi} m(r) \text{ for } |z| = r, 0 \leq r < 1.$

Such a function is constructed in [4].

For each positive integer N we set

$$E_N = \{\theta; 0 \leq \theta \leq 2\pi, |f(re^{i\theta})| \leq N \text{ for } 0 \leq r < 1\},\$$

then

$$\max\left(\bigcup_{N=1}^{\infty}E_{N}\right)=2\pi,$$

hence there is an N, meas $(E_N) > 0$.

Put

$$E = E_N,$$

 $f_n(z) = (-1)^n f(z) + \frac{1}{n}, n = 1, 2, 3, ...,$

then E and $\{f_n(z)\}$ satisfy above conditions (i), (ii), (iii) obviously.

References

- [1] Nevanlinna, R.: Eindeutige analytische Funktionen. Zweite Auflage (1953). Springer-Verlag, Berlin-Göttingen-Heidelberg.
- [2] Nakamura, Y.: On a localization of the theorem of Fatou-Nevanlinna. Proc. of the Technical High School attached to the Tokyo Institute of Technology, 1 (1970) (in Japanese).
 - -----: Functions of locally bounded characteristics (to appear in "TRU Mathematics," Science Univ. of Tokyo).
- [3] Priwalow, I. I.: Randeigenschaften analytischer Funktionen (1956). VEB Deutscher Verlag der Wissenschaften (Berlin).
- Barth, K. F., and W. J. Schneider: On the impossibility of extending the Riesz uniqueness theorem to functions of slow growth. Ann. Acad. Sci. Fenn., Ser. A.I., 432 (1968).