172. A Remark on Multiplicative Linear Functionals on Measure Algebras

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., Dec. 13, 1971)

1. Let G be a non-discrete locally compact abelian group with the dual group Γ . Let $\overline{\Gamma}^B$ be the Bohr compactification of Γ . Let M(G) be the Banach algebra consisting of all bounded regular Borel measures on G under the convolution multiplication and \mathfrak{M} the maximal ideal space of M(G). By $\hat{\mu}$ we denote the Gelfand transform of $\mu \in M(G)$. We may suppose that Γ is the open subset of \mathfrak{M} . Let $\overline{\Gamma}$ be the closure of Γ in \mathfrak{M} .

In [1], E. Hewitt and S. Kakutani showed the following theorem.

Theorem 0 (E. Hewitt and S. Kakutani). If H is a compact subgroup of G and A[H] is a subalgebra of M(G) consisting of all measures which are absolutely continuous with respect to the Haar measure on H, there is a multiplicative linear functional f in $\overline{\Gamma} \setminus \Gamma$ such that $\hat{\mu}(f) = \mu(G)$ for all $\mu \in A[H]$.

Let \mathfrak{F} be a σ -ring generated by cosets of H and $M(\mathfrak{F})$ a subalgebra of M(G) of all measures which are concentrated on \mathfrak{F} , to prove Theorem 0, it is enough to show that there is a multiplicative linear functional f such that $\hat{\mu}(f) = \mu(G)$ for all $\mu \in M(\mathfrak{F})$. It is reasonable to conjecture that this theorem is true under more weak hypothesis, that is, H is a non-open closed subgroup of G. Since $M(\mathfrak{F})^{\perp}$, which is the subspace consisting of all measures that are singular with respect to all measures in $M(\mathfrak{F})$, is an ideal, there is a multiplicative linear functional f_0 such that $\hat{\mu}(f_0) = \mu(G)$ if $\mu \in M(\mathfrak{F})$ and $\hat{\mu}(f_0) = 0$ if $\mu \in M(\mathfrak{F})^{\perp}$. Then, it is natural to conjecture that f_0 is an element of $\overline{\Gamma} \setminus \Gamma$.

In this paper, we shall show that these conjectures are true.

2. We may suppose that $\overline{\Gamma}^{B}$ is the compact subset of \mathfrak{M} as follows:

$$\hat{\mu}(\gamma) = \int_{G} (-x, \gamma) d\lambda(x) \qquad (\gamma \in \bar{\Gamma}^{B}, \, \mu \in M(G))$$

where λ is the discrete part of μ . Throughout this section, for $\mu \in M(G)$ let λ be the discrete part of μ and η the continuous part of μ .

At first, we shall show the following theorem.

Theorem 1. $\overline{\Gamma}^{B}$ is contained in $\overline{\Gamma} \setminus \Gamma$.

Proof. Suppose that $\{V_{\alpha}\}$ is a neighborhood base of 0 in G, for each V_{α} there is a continuous positive definite function f_{α} whose compact support lies in V_{α} such that $f_{\alpha}(0)=1$, and define

No. 10]

$$A_{\alpha}(\mu) = \int_{\Gamma} \hat{f}_{\alpha}(\gamma) | \hat{\mu}(\gamma) |^{2} d\gamma \qquad (\mu \in M(G)).$$

We say that $\lim_{\alpha} A_{\alpha}(\mu) = A$ if to every $\varepsilon > 0$ there is a neighborhood V of 0 in G such that $|A_{\alpha}(\mu) - A| < \varepsilon$ for all $V_{\alpha} \subset V$. We can have

$$\lim_{\alpha} A_{\alpha}(\mu) = \sum_{x \in G} |\mu(\{x\})|^2 \quad \text{for any } \mu \in M(G) \ ([2]).$$

Define the canonical continuous injection φ of Γ into $\overline{\Gamma}^B$ such that $\hat{\mu}(\varphi(\gamma)) = \hat{\lambda}(\gamma)$ for $\mu \in M(G)$ and $\gamma \in \Gamma$. Then $\varphi(\Gamma)$ is the dense subgroup of $\overline{\Gamma}^B$. Since $\overline{\Gamma} \setminus \Gamma$ is closed, it is enough for our purpose to prove that $\varphi(\Gamma) \subset \overline{\Gamma} \setminus \Gamma$. Given $\gamma_0 \in \Gamma, \varepsilon > 0$ and $\mu_1, \dots, \mu_m \in M(G)$. Put

$$V = \bigcap_{k=1}^{m} \{ f \in \mathfrak{M} : | \hat{\mu}_{k}(f) - \hat{\mu}_{k}(\varphi(\gamma_{0}))| < \varepsilon \}.$$

If we can prove that $V \cap \Gamma \neq \phi$, this completes the proof. Let

$$V'\!=\!igcap_{k=1}^m \left\{\!\gamma\in arGamma\!:\! |\hat{\eta}_k(\gamma)|\!+\!|\hat{\lambda}_k(\gamma)\!-\!\hat{\lambda}_k(\gamma_0)|\!<\!arepsilon
ight\}\!.$$

Clearly, $V \cap \Gamma \supset V'$. We shall prove $V' \neq \phi$. Assume $V' = \phi$. Put $U = \bigcap_{k=1}^{m} \{ \gamma \in \overline{\Gamma}^B : |\hat{\mu}_k(\gamma) - \hat{\mu}_k(\varphi(\gamma_0))| < \varepsilon/2 \}.$

$$U = \bigcap_{k=1}^{m} \{ \gamma \in \overline{\Gamma}^{B} : |\hat{\lambda}_{k}(\gamma) - \hat{\lambda}_{k}(\gamma_{0})| < \varepsilon/2 \}.$$

Then, since U is open in $\overline{\Gamma}^B$ and $\varphi(\Gamma)$ is the dense subgroup of $\overline{\Gamma}^B$, there is a finite subset $\{\gamma_1, \dots, \gamma_n\}$ of Γ such that

(1)
$$\bigcup_{i=1}^{n} ((\varphi(\gamma_i)) + U) = \overline{\Gamma}^{B}.$$

Put $W = \varphi^{-1}(U)$, then

$$W = \bigcap_{k=1}^{m} \{ \gamma \in \Gamma : |\hat{\lambda}_k(\gamma) - \hat{\lambda}_k(\gamma_0)| < \varepsilon/2 \}.$$

Furthermore, by (1)

(2)

$$\Gamma = \bigcup_{i=1}^{n} (\gamma_i + W).$$

We put

$$W_k = \{ \gamma \in \Gamma : |\hat{\gamma}_k(\gamma)| > \varepsilon/2 \} \qquad (k = 1, 2, \cdots, m),$$

then since $V' = \phi$, we have that $\bigcup_{k=1}^{m} W_k \supset W$. Thus by (2) it follows that

$$(3) \qquad \qquad \bigcup_{i=1}^{n} \bigcup_{k=1}^{m} (\gamma_{i} + W_{k}) = \Gamma.$$

On the other hand, from $\int_{\Gamma} \hat{f}_{\alpha}(\gamma) d\gamma = 1$, $\hat{f}_{\alpha} \ge 0$ and (3) we can get that (4) $\int_{(\alpha) \to \pm W_{\alpha}(\gamma)} \hat{f}_{\alpha}(\gamma) d\gamma \ge \frac{1}{mn}$

for some choice
$$i(\alpha) \in \{1, \dots, n\}$$
 and $k(\alpha) \in \{1, \dots, m\}$. Put

$$\eta_{i,k}(E) = \int_{G} (x, \gamma_i) \chi_E d\eta_k(x)$$

for every Borel subset E of G. Clearly, $\eta_{i,k}$ is a continuous measure for each i and k, thus

T. Shimizu

[Vol. 47,

(5)
$$\lim_{\alpha} \sum_{i=1}^{n} \sum_{k=1}^{m} A_{\alpha}(\eta_{i,k}) = 0$$

However, from (4) it follows that

$$\sum_{i=1}^{n} \sum_{k=1}^{m} A_{\alpha}(\eta_{i,k}) = \sum_{i=1}^{n} \sum_{k=1}^{m} \int_{\Gamma} \hat{f}_{\alpha}(\gamma) |\hat{\eta}_{i,k}(\gamma)|^{2} d\gamma$$

$$\geq \int_{\Gamma} \hat{f}_{\alpha}(\gamma) |\hat{\eta}_{i(\alpha),k(\alpha)}(\gamma)|^{2} d\gamma$$

$$\geq \int_{(\tau_{i(\alpha)} + W_{k(\alpha)})} \hat{f}_{\alpha}(\gamma)^{*2} / 4d\gamma \geq \varepsilon^{2} / 4mn \geq 0$$

This is contradict to (5). Thus, $V' \neq \phi$. This completes the proof.

Theorem 2. Let H be a non-open closed subgroup of G. Let \mathfrak{F} be the σ -ring generated by all cosets of H. We denote by $M(\mathfrak{F})$ the closed subalgebra of M(G) consisting of measures that are concentrated on \mathfrak{F} . We denote by $M(\mathfrak{F})^{\perp}$ the complementary ideal of $M(\mathfrak{F})$. Define the linear functional f_0 on M(G) as follows:

$$\hat{\mu}(f_0) = \begin{cases} \mu(G) & \text{if } \mu \in M(\mathfrak{F}), \\ 0 & \text{if } \mu \in M(\mathfrak{F})^{\perp}. \end{cases}$$

Then f_0 is an element of $\overline{\Gamma} \setminus \Gamma$.

Proof. It is evident that f_0 is a multiplicative linear functional on M(G). Let Λ is the anihilator of H in Γ . As well known, Λ is the dual group of G/H. Since G/H is non-discrete, Λ is non-compact. Let ψ be the canonical homomorphism of G to G/H, then there is a homomorphism Φ of M(G) onto M(G/H) such that $\Phi\mu(E) = \mu(\psi^{-1}(E))$ for each Borel set E of G/H ([2]). If \mathfrak{M}_H is the maximal ideal space of M(G/H), then Φ induces the continuous injection α of \mathfrak{M}_H into \mathfrak{M} such that

(6) $\hat{\mu}(\alpha f) = \widehat{\phi} \widehat{\mu}(f)$ $(f \in \mathfrak{M}_H, \mu \in M(G)).$ Clearly, $\alpha(\Lambda) \subset \Gamma$. Easily, we can get that

(7) $\Phi(M(\mathfrak{F})) = M_d(G/H)$ and $\Phi(M(\mathfrak{F})^{\perp}) = M_c(G/H)$, where $M_d(G/H)$ and $M_c(G/H)$ are the subalgebra consisting of all discrete and continuous measures on G/H respectively. Define a multiplicative linear functional g_0 on M(G/H) such that

$$\hat{\mu}(g_0) = \begin{cases} \mu(G/H) & \text{ if } \mu \in M_d(G/H), \\ 0 & \text{ if } \mu \in M_c(G/H). \end{cases}$$

Then, from Theorem 1, let $\overline{\Lambda}$ be the closure of Λ in \mathfrak{M}_H , g_0 is contained in $\overline{\Lambda}/\Lambda$. Thus, (6) and (7) show $\alpha g_0 = f_0$. Hence, from that α is continuous and that Λ is closed in Γ , we have that $f_0 \in \overline{\Gamma} \setminus \Gamma$. This completes the proof.

Let *H* be a non-open closed subgroup of *G*. Then there is the weakest locally compact topology τ on *G* such that *H* is an open subgroup of a locally compact abelian group (G, τ) . Let Γ_H be the dual group of (G, τ) . For $\gamma \in \Gamma_H$, define a multiplicative linear functional on M(G) as follows:

778

No. 10]

Linear Functionals on Measure Algebras

$$\hat{\mu}(\gamma) = \begin{cases} \int_{\sigma} (-x, \gamma) d\mu(x) & \text{if } \mu \in M(\mathfrak{J}), \\ 0 & \text{if } \mu \in M(\mathfrak{J})^{\perp}. \end{cases}$$

Then, Γ_H may be considered a subset of \mathfrak{M} . Furthermore, if $\gamma \in \Gamma_H$ and $\mu \in M(\mathfrak{J})$, then $\gamma d\mu \in M(\mathfrak{J})$. Thus, it follows the next corollary to Theorem 2.

Corollary. Γ_H is contained in $\overline{\Gamma} \setminus \Gamma$.

References

- [1] E. Hewitt and S. Kakutani: Some multiplicative linear functionals on M(G). Annals of Math., 79, 489-505 (1964).
- [2] W. Rudin: Fourier Analysis on Groups. Interscience, New York (1962).