3. On Integral Inequalities Related with a Certain Nonlinear Differential Equation

By Tominosuke Otsuki
Tokyo Institute of Technology
(Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1972)

As is shown in [3], the following nonlinear differential equation:

$$
\begin{equation*}
n h\left(1-h^{2}\right) \frac{d^{2} h}{d t^{2}}+\left(\frac{d h}{d t}\right)^{2}+\left(1-h^{2}\right)\left(n h^{2}-1\right)=0 \tag{1}
\end{equation*}
$$

where n is any integer $\geqq 2$, is the equation for the support function $h(t)$ of a plane curve in the unit disk: $u^{2}+v^{2}<1$, with respect to the tangent direction angle t, which is related with a minimal hypersurface in the $(n+1)$-dimensional unit sphere. Any solution $h(t)$ of (1) such that $h^{2}+\left(\frac{d h}{d t}\right)^{2}<1$ is periodic and its period T is given by the improper integral:

$$
\begin{equation*}
T(C)=2 \int_{a_{0}}^{a_{1}} \frac{d h}{\sqrt{1-h^{2}-C\left(\frac{1}{h^{2}}-1\right)^{1 / n}}}, \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
C=\left(a_{0}^{2}\right)^{1 / n}\left(1-a_{0}^{2}\right)^{1-(1 / n)}=\left(a_{1}^{2}\right)^{1 / n}\left(1-a_{1}^{2}\right)^{1-(1 / n)} \\
\left(0<a_{0}<\frac{1}{\sqrt{n}}<a_{1}\right)
\end{gathered}
$$

is the integral constant of (1). Regarding the function $T(C), 0<C<A$ $=(1 / n)^{1 / n}(1-(1 / n))^{1-(1 / n)}$, the following is known in [3]:
(i) $T(C)$ is differentiable and $T(C)>\pi$,
(ii) $\lim _{C \rightarrow 0} T(C)=\pi$ and $\lim _{C \rightarrow A} T(C)=\sqrt{2} \pi$.

Putting $h^{2}=x, a_{0}{ }^{2}=x_{0}, a_{1}{ }^{2}=x_{1}$ and $1 / n=\alpha$, (2) can be written as

$$
\begin{equation*}
T(C)=\int_{x_{0}}^{x_{1}} \frac{d x}{\sqrt{x(1-x)-C \psi(1-x)}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(x)=x^{\alpha}(1-x)^{1-\alpha} \quad \text { on } \quad 0<x<1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\psi\left(x_{0}\right)=\psi\left(x_{1}\right), \quad 0<x_{0}<\alpha<x_{1}<1, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
0<C<A=\psi(\alpha) \tag{6}
\end{equation*}
$$

Now, suppose that α is any real number such that
(7)

$$
0<\alpha \leqq 1 / 2
$$

and consider as the function $T(C)$ is defined by the right hand side of (3) on the interval (6). Then, we have

[^0]Theorem. For the integral T(C), we have the following inequality:

$$
T(C)<\left(\frac{1}{\sqrt{2}}+\sqrt{1-\alpha}\right) \pi
$$

Proof. We have easily

$$
\begin{gather*}
\psi(x) \psi(1-x)=x(1-x), \\
\frac{d \psi(x)}{d x}=\frac{\alpha-x}{x(1-x)} \psi(x) \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{d \psi(1-x)}{d x}=\frac{1-\alpha-x}{x(1-x)} \psi(1-x) . \tag{10}
\end{equation*}
$$

$\psi(x)$ is monotone increasing on $0<x<\alpha$ and monotone decreasing on $\alpha<x<1$. Let $X_{0}(u)$ and $X_{1}(u)$ be the inverse functions of $u=\psi(x)$ on $0<x<\alpha$ and $\alpha<x<1$ respectively. Thus, changing the integral parameter x in (3) to $u=\psi(x)$ and using (8) and (9), T(C) can be written as

$$
\begin{aligned}
T(C)= & \int_{x_{0}}^{\alpha} \frac{d x}{\sqrt{x(1-x)-C \psi(1-x)}}+\int_{\alpha}^{x_{1}} \frac{d x}{\sqrt{x(1-x)-C \psi(1-x)}} \\
= & \int_{C}^{A} \frac{\sqrt{X_{0}(u)\left(1-X_{0}(u)\right)}}{\left(\alpha-X_{0}(u)\right) \sqrt{u(u-C)}} d u \\
& +\int_{A}^{C} \frac{\sqrt{X_{1}(u)\left(1-X_{1}(u)\right)}}{\left(\alpha-X_{1}(u)\right) \sqrt{u(u-C)}} d u \\
= & \int_{C}^{A} \frac{\sqrt{X_{0}(u)\left(1-X_{0}(u)\right)(A-u)}}{\left(\alpha-X_{0}(u)\right) \sqrt{u}} \cdot \frac{d u}{\sqrt{(A-u)(u-C)}} \\
& +\int_{C}^{A} \frac{\sqrt{X_{1}(u)\left(1-X_{1}(u)\right)(A-u)}}{\left(X_{1}(u)-\alpha\right) \sqrt{u}} \cdot \frac{d u}{\sqrt{(A-u)(u-C)}} .
\end{aligned}
$$

Now, we assume that

$$
\begin{equation*}
\frac{\sqrt{X_{i}(u)\left(1-X_{i}(u)\right)(A-u)}}{\left|\alpha-X_{i}(u)\right| \sqrt{u}} \leqq \lambda_{i} \tag{11}
\end{equation*}
$$

for $C \leqq u<A, i=0,1$. Then, we have

$$
\begin{equation*}
T(C)<\left(\lambda_{0}+\lambda_{1}\right) \int_{C}^{A} \frac{d u}{\sqrt{(A-u)(u-C)}}=\left(\lambda_{0}+\lambda_{1}\right) \pi \tag{12}
\end{equation*}
$$

In the following, we shall show that we can take the values of λ_{0} and λ_{1} as

$$
\lambda_{0}=1 / \sqrt{2} \quad \text { and } \quad \lambda_{1}=\sqrt{1-\alpha}
$$

The inequalities (11) are equivalent to

$$
\begin{equation*}
\frac{\sqrt{x(1-x)(A-\psi(x))}}{|\alpha-x| \sqrt{\psi(x)}} \leqq \lambda_{i} \tag{13}
\end{equation*}
$$

for $x_{0} \leqq x<\alpha$ and $\alpha<x \leqq x_{1}$ respectively. Setting $\lambda=\lambda_{0}, \lambda_{i}$, (13) is equivalent to

$$
x(1-x)(A-\psi(x)) \leqq \lambda^{2}(\alpha-x)^{2} \psi(x),
$$

that is

$$
x(1-x) A \leqq \psi(x)\left[\lambda^{2}(\alpha-x)^{2}+x(1-x)\right] .
$$

By (8), this inequality can be written as

$$
\begin{equation*}
A \leqq \frac{\lambda^{2}(\alpha-x)^{2}+x(1-x)}{\psi(1-x)}:=f_{\lambda}(x) \tag{14}
\end{equation*}
$$

For this positive valued function $f_{\lambda}(x)$ on $0<x<1$ for any $\lambda>0$, we have

$$
\begin{equation*}
f_{2}(\alpha)=A, \tag{15}
\end{equation*}
$$

and

$$
\begin{aligned}
\frac{f_{\lambda}^{\prime}}{f_{\lambda}} & =\frac{-2 \lambda^{2}(\alpha-x)+1-2 x}{\lambda^{2}(\alpha-x)^{2}+x(1-x)}-\frac{1-\alpha-x}{x(1-x)} \\
& =\frac{g_{\lambda}(x)}{x(1-x)\left[\lambda^{2}(\alpha-x)^{2}+x(1-x)\right]},
\end{aligned}
$$

where

$$
\begin{equation*}
g_{\lambda}(x)=(\alpha-x)\left[-\lambda^{2} \alpha(1-\alpha)+\left(1-\lambda^{2}\right) x(1-x)\right] . \tag{16}
\end{equation*}
$$

i) Case $\lambda=1 / \sqrt{2}$. We have

$$
g_{\lambda}(x)=-\frac{1}{2}(x-\alpha)^{2}(1-\alpha-x)
$$

which shows that (14) holds on the interval $0<x<\alpha$, but not on any interval (α, x_{1}].
ii) Case $\lambda=\sqrt{1-\alpha}$. We have

$$
\begin{aligned}
g_{\lambda}(x) & =(\alpha-x)\left[-\alpha(1-\alpha)^{2}+\alpha x(1-x)\right] \\
& =\alpha(x-\alpha)\left[x^{2}-x+(1-\alpha)^{2}\right]
\end{aligned}
$$

and

$$
1-4(1-\alpha)^{2} \leqq 1-4\left(1-\frac{1}{2}\right)^{2}=0
$$

by (7), which shows that (14) holds on the interval $0<x<1$.
Thus, we have proved that (11) are true when we put $\lambda_{0}=1 / \sqrt{2}$ and $\lambda_{1}=\sqrt{1-\alpha}$. Hence, we get from (12)

$$
T(C)<\left(\frac{1}{\sqrt{2}}+\sqrt{1-\alpha}\right) \pi
$$

Remark. The author wanted originally to have the inequality: $T(C)<2 \pi$ from the standpoint of a geometrical problem and S. Furuya gave firstly an answer to it by proving the inequality : $T(C)<\sqrt{(n-1) / n}$ $\times 2 \pi$ in [1]. By means of a numerical analysis and observation on (1) done by M. Urabe, it is expected to have the inequality: $T(C)<\sqrt{2} \times \pi$ in [4].

References

[1] S. Furuya: On Periods of Periodic Solutions of a Certain Non Linear Differential Equation (to appear in Japan-United States Seminar on Ordinary and Functional Equations). Springer-Verlag (1972).
[2] Wu-Yi Hsiang and H. B. Lawson, Jr.: Minimal submanifolds of low cohomogeneity. J. Differential Geometry, 5, 1-38 (1970).
[3] T. Otsuki: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math., 92, 145-173 (1970).
[4] -: On a 2-Dimensional Riemannian Manifold (to appear in Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo), 401414 (1972).

[^0]: *) Dedicated to Professor Yoshie Katsurada on her 60th birth day.

