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1. Introduction. Let 2 be a bounded domain in R with smooth
boundary 3t2 and let C0(/2) be the Banach space of all continuous func-
tions f on D satisfying f(x)--O for x e3{2, with the norm [[f[[
=maxea If(x)[. We set a e C0(t0). In the present paper, we consider
the differential equation
(1.1) (3u/ 3t) Au+ 7(u) 0 in/2 (0, oo)
with the boundary condition
(1.2) u(x, t)-O on
and the initial condition
(1.3) u(x, 0)- a(x) in
where (and throughout the present paper unless otherwise stated)
(r) is a strictly monotone increasing continuous function defined on

R satisfying lim q(r)= c, lim,_ (r)-- oo and (0)-0, A is the
Laplace operator in the space variable x and y=y(r) is a monotone
non-decreasing continuous unction defined on R satisfying (0)--0.

Let h and k be positive numbers and define the ollowing implicit
finite difference scheme (1.4) which is an analogue of the problem (1.1)-
(1.2)-(1.3)

I / +
(1.4) i,i., ...,i integers, (ih,ih, ...,ih)e 9, n=1,2, ...,

[u,,...,-a(h, ,h, ..., h), (ih, ih, ..., ih) e [2,
where

d

and each term 2(),$,,,..., in the right-hand side o the above formula
is defined as ollows.

Case 1. If (ih, ..., i_h, (i +_ 1)h, i+h, ..., iah) e 9, then
),,,..., (,...,q_,+,+,...,a-- 2,,,...,

+ ,...,,_,,-,,+ ,...,) /h.
Case 2. If (ih, ..., i_h, (i+ 1)h, i+h, ..., i,h) and (ih, ...,

i_lh, (i--1)h, i+h, ..., iah) e , then
A(,,,..., 2{(0,,,...,; + 1)-,...,,_,q_,q+,,...,

-oi,i,...id; ii,...

where
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0,,....,,;=inf {0 e (0, 1]; (ih, ..., i_h,(i+O)h,i+h, ...,ih) e 9}0.
Case 3. If (ilh, ..., i_lh, (ij+ 1)h, ij+h, ..., ih) e and (ih, ...,

i_h, (i--1)h, i+h, ..., ih) e , then
A(,,,...,-- 2{(0,,...,;+ 1) ,...,_,,+,+,...,

i1’2,’",

where
,,,...,;=inf { e (0, 1] (ih, ..., i_h, (i--O)h, i+h, ..., ih) e 9}>0.

Case 4. I (ih, ..., i_h, (i 1)h, i+h, ..., ih) , then,.,,...,- 2.,,..., ,,,...,;. ,,...,;/h,
where ,,,...,; and ,,...,; are as defined above.

Our purpose is to prove the ollowing theorem by the recent theory
of nonlinear semi-groups.

Theorem 1. (i) There exists a unique solution { ,,,...,} o (1.4).
(ii) Fix an arbitrary positive number T. Under the additional

assumption tha and are continuously diereniable, we have
lim sup ]u,,...,-u((ih, ih, ..., ih), nk)]=0(1.6) 0,o

for some u=u(x, t) e C([0, T]; C0(9)).
Remark 1. u in Theorem 1 will be given by a (nonlinear) con-

traction semi-group {St)to in C0(9)"
(1.7) u(., t)=S,a, Ot<T.
Such a semi-group will be constructed in 2.

Remark 2. In the case y(r)0, (1.1) is formally equivalent to the
nonlinear heat equation" cp(v/t)= div ( grad v), where specific heat
c, density p and heat conductivity
=v(x, t); K’-, 9’oK-cp/, 3u/3t=Kov. Concerning this, see [10],
p. 49 (cf. [9]).

2. Preliminaries.) By definition a (possibly) nonlinear operator
A in real Banach space X is dissipative if

f- g whenever f, g e D(A) for each 2 > 0. The dissipativity o A
is equivalent to the condition" v(f--g,--Af+Ag)O whenever f,
g eD(A), where r(f, g)--lim,,oe-(l]f+eg l--lJf]J), f,g eX. A dissipa-

tive operator A in X is said to be m-dissipative if R(I--2A)=X for
every, or equivMently, for some 2 >0.

Let A be the infinitesimal generator of a "compact’’) contraction
semi-group {exp (tA); t0} of class (C0) in C0(9). For 9 introduced in

1, we set 9-- and define the operator in C0(9) by

(2.1) D(= C0(9), (f)(x)-(f(x)), x e 9, for f e D().
Similarly one defines the operator 7 in C0(9).

1) In this section we discuss in the abstract setting.
2) A semi-group {exp (t’); t>_0} of class (Co) in Banach space is said to be

compact if exp (t_if) is compact for every t>0 (see [7]).
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Proposition 2. The product fl(A--) of fl and A- is an m-dis-
sipative operator with domain dense in Co([2).

In the case X= C0(9),
(2.2) v(f g)-- max (sgn f(x))g(x), f, g e Co([2), f 0

([8], 6). Consequently we have
Lemma 3. The product flA of and a dissipative operator A in

Co([2) is dissipative.
Proof of Proposition 2. Since A- is dissipative, /(A-?) is dis-

sipative by Lemma 3. We shall prove the relation R(I-fl(A--7))
=C0(9). We introduce the Yosida approximation A,(e>O) o A, as
usual, by A,=e-{(I-eA)--I} (=A(I-eA)-), which is a continuous
dissipative operator defined on C0(9). Since fl(A,-) (0) is a con-
tinuous dissipative operator defined on C0(9), it is m-dissipative (see
[5]). Accordingly, or an arbitrarily fixed w e C0(9), there exists

f e C0(9) satisfying
(2.3)
or each e> 0. By the dissipativity of (A,-?) we have
(2.4)
or each e >0. Noticing that

(2.5) <-II w +max (9(2 w II), 9(- 2 w [I)) + max (Y(ll w [I), Y(--II w ll))
and that (I-A)- is compact (see Theorem 3.3 in [7]), we can conclude
that the set {(I--eA)-f,; >0} is relatively compact in C0(2). Conse-
quently there exists a sequence e $ 0 (e >0) sueh that
(2.6) s-lim (I-- eA)-f,. f
exists in C0(tg). From this, (2.6) and (2.3) one obtains

lim IIf.-fll_<lim IIf,-(I-sA)-f,ll-lim n
(2.7) _< {max (9(2

+ max (Y(II w II), Y(-II w ))}. lim -0.

s-lim A(I--A)-
(2.8)

s-lira (/5-(f,. w) + f..) fl-(f-- w) + f.
In view of (2.6) and (2.8) and by the closedness of A, f e D(A) and Af

tS-(f w) +f Q.E.D.
Applying Theorem I in [2] to the operator fl(A-), we obtain
Corollary 4. t(A--) "generates" a (nonlinear) contraction semi-

group on C0(t9)
(2.9) exp (/(A-- )). a- s-lira {I-2(A-

$0

exists for a e Co(9), t >_ 0 and {exp (tfl(A- )) t >_ 0} belongs to Q0(C0(9))
in the sense of [2].

Accordingly
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Remark 3. Under the additional assumption that {exp (tA) t >_ 0}
is "non-negative" (see [8]), {exp (tfl(A--));,t_O} belongs to Q(Co([2))
in the sense of [3].

3. Proof of Theorem 1. Let 17) be the finite dimensional Banach
space of all real vectors {,,...,}(,,,...,)e, normed by {,,...,}[[()
max(,.,...,)e ,,...,1. Since, in the case X- 17), the functional

r-r() is o the orm" r()({,,,...,}, {,,,...,})-max (sgn ,,...,).
V,,,,,...,,, where the maximum is taken for all (i, i, ..., i) satisfying

[$,,,...,,]=11{,,,**,...,,}[]() ([8], 6, cf. (2.2)), A() defined in 1 is dis-
sipative in 17). On the other hand, for fl and y we can define as in
(2.1) the corresponding operators in 17), which we denote also by fl and
? respectively. Since fl(A()--?) is a continuous dissipative operator
defined on 17), it is m-dissipative ([5]), which proves Theorem 1, (i).
We set

exp (tfl(A() ?)) {$,,,,.,...,,}- s-lim (I--2fl(A()--))-*/$,,.,...,}
0

for {$i,,i.,...,,} e
Now define the linear contraction operator P() (h0) of C0(9) into

l) by (P(a)f),l,i.,...,,= f(ilh,i.h, .,ih),(ilh,i2h, .,ih) e [2, forfe C0(/2).
We define the operator d0 in C0(2) by D(d0)= {f e C0(9) f e W,q(9) and

df e C0(/2)}, (d < q< c), (dof)(x)-- df(x), f e D(do), which is independent
of the choice of q. Thus z/0 is the infinitesimal generator of a compact
contraction semi-group of class (Co) in C0(t0) (see [6]).

Lemma 5. Assume that and are continuously differentiable
and fix an arbitrary positive number T. Then
(3.1) lim sup

00KtKT

for each a e Co([2).
Sketch of the proof of Lemma 5. Set g e C0(/2) 1C1(/2). Noticing

that (?--fl- and y are continuously differentiable, we have
=(I--2fl(Ao--7))-g e Co(9) C()

whenever 20. Consequently we have, remembering the definition
z/(), that

lira IIP()(I--2fl(Zlo-7))-lg-(I-2fl(A()-?))-lP()gl

k$0

i II(()P()Y-P()Y)-(P()0Y-P())I1)-o.
0

Hence we have
lim IIP()(I--2fl(lo--))-f --(I--2fl(,()--
0

for each f e C0(t0) and 20, by means o which we can prove (3.1)
(cf. Theorem 3.1 in [1]).

Proof of Theorem 1, (ii). First we assume that a e C0(9) C(/2).
We have
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(I--

+[[exp
and, by the estimate (1.10) in [2],

Accordingly by Lemma 5 we obtain
lim sup

k O,k nKT/k

It is easy to prove the above equality for a e C0(9), which is nothing but
(1.6) with
(1.7)’ u(., t)--exp (t(Ao--)).a;
this is the explicit form of (1.7). Q.E.D.
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