12. The Stable Jet Range of Differential Complexes

By Kōji Shiga

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kunihiko Kodaira, M. J. A., Feb. 12, 1972)

1. Let M be an *n*-dimensional smooth manifold with countable basis. A topological space W is called an inductive vector bundle over M if there is an increasing sequence of finite-dimensional smooth vector bundles W_k $(k=0, 1, \cdots)$ over M, W_k being a subbundle of W_{k+1} , such that $\lim \dim W_k = \infty$ and $W = \varinjlim W_k$ (inductive limit space). Then Wbecomes a fibre space over M. We can naturally define the space of smooth cross-sections $\Gamma(W)$ which has a module structure over the algebra \mathcal{E} of smooth functions on M. We endow $\Gamma(W)$ with a nuclear topology such that, if M is compact, $\Gamma(W)$ coincides with the inductive limit space $\varinjlim \Gamma(W_k)$ where each $\Gamma(W_k)$ is assumed to have the C^{∞} topology. Two inductive vector bundles W and W' are called isomorphic if $\Gamma(W) \cong \Gamma(W')$ as topological vector spaces and \mathcal{E} -modules.

We say that a sequence

 $0 \xrightarrow{} \sum^{0} \xrightarrow{} \sum^{1} \xrightarrow{} \sum^{2} \xrightarrow{} \cdots$

is a differential complex over M if i) each \sum^{p} is an \mathcal{E} -submodule of some $\Gamma(W^{p})$, ii) d is continuous and $d \circ d = 0$, iii) supp $dL \subset$ supp L where supp L means the support of $L \in \sum^{p}$.

2. Suppose that finite-dimensional smooth vector bundles E and F over M be given. Note that the jet bundles $J^{k}(E)$ of E (k=0, 1, 2, ...) have the canonical surjective maps $\lambda^{k}: J^{k+1}(E) \rightarrow J^{k}(E)$. Hence we obtain the injective maps

 $(\lambda^k)^*$: Hom $(J^k(E), F) \rightarrow$ Hom $(J^{k+1}(E), F)$ $(k=0, 1, 2, \cdots)$, and thus the inductive vector bundle

 $C^1(E,F) = \lim \operatorname{Hom} (J^k(E),F)$

is constructed. The cross-section space of $C^{1}(E, F)$ is regarded as the space of the differential operators from $\Gamma(E)$ to $\Gamma(F)$.

More generally, set

 $C^{p}(E, F) = \varinjlim \operatorname{Hom} (\wedge^{p} J^{k}(E), F), \qquad p = 1, 2, \cdots$ $C^{0}(E, F) = \overrightarrow{F},$

and write $C^{p}[E, F] = \Gamma(C^{p}(E, F))$ for $p = 0, 1, \cdots$.

Proposition. Each $C^{p}[E, F]$ is canonically identified with the space of continuous multilinear alternating mappings from $\Gamma(E) \times \cdots \times \Gamma(E)$ (p times) to $\Gamma(F)$ satisfying the condition

 $\operatorname{supp} L(\xi_1, \cdots, \xi_p) \subset \operatorname{supp} \xi_1 \cap \cdots \cap \operatorname{supp} \xi_p.$

3. Our main concern is to study the cohomological structure of a

(1) $\cdots \xrightarrow{d} C^{p}[E, F] \xrightarrow{d} C^{p+1}[E, F] \xrightarrow{d} \cdots$

Putting

 $^{(k)}C^{p}[E,F] = \Gamma(\operatorname{Hom}(\wedge^{p}J^{k}(E),F)),$

we say that the subcomplex with order k is well-defined if $d({}^{(k)}C^{p}[E, F]) \subset {}^{(k)}C^{p+1}[E, F]$ for $p=0, 1, \cdots$ and thus the subcomplex

$$(2) \qquad \cdots \xrightarrow{d} {}^{(k)}C^{p}[E,F] \xrightarrow{d} {}^{(k)}C^{p+1}[E,F] \xrightarrow{d} \cdots$$

is meaningful. We denote by $H^*(E, F) = \sum \bigoplus H^p(E, F)$ and ${}^{(k)}H^*(E, F) = \sum \bigoplus {}^{(k)}H^p(E, F)$ the cohomology group of (1) and (2) respectively.

Definition 1. The complex (1) has the stable jet range $k \ge k_0$ if, for $l \ge l_0$,

i) the subcomplexes with order k are all well-defined;

ii) the injective maps induce the isomorphisms

$$^{(k)}H^*(E,F)\cong H^*(E,F).$$

Definition 2. The complex (1) has the elliptic jet range $l \ge l_0$ if, for $l \ge l_0$,

i) the subcomplexes with order l are all well-defined;

ii) each subcomplex with order l gives an elliptic complex over M.

4. To obtain a complex with the form (1), we shall introduce the following notion:

Definition 3. $\Gamma(E)$ is called a Lie algebra over M, if there is a $\Phi \in C^2[E, F]$ such that $[\xi, \eta] = \Phi(\xi, \eta)$ satisfies the Jacobi identity (so that $\Gamma(E)$ becomes a Lie algebra).

Assume that $\Gamma(E)$ is a Lie algebra over M. If there is a representation φ (as Lie algebra) of $\Gamma(E)$ to Hom $(\Gamma(F), \Gamma(F))$ with $\varphi \in C^1[E, C^1(F, F)]$, then, by virtue of the cohomology theory of Lie algebra, we can canonically obtain a differential complex with the form (1): that is, $d: C^p[E, F] \rightarrow C^{p+1}[E, F]$ is given by the following formula:

$$dL(\xi_1, \dots, \xi_{p+1}) = \sum (-1)^{i-1} \varphi(\xi_i) L(\xi_1, \dots, \xi_i, \dots, \xi_{p+1}) \\ + \sum_{i \leq j} (-1)^{i+j} L([\xi_i, \xi_j], \xi_1, \dots, \check{\xi}_i, \dots, \check{\xi}_j, \dots, \xi_{p+1})$$

 $(\xi_1, \dots, \xi_{p+1} \in \Gamma(E))$; here use is made of the identification of $C^p[E, F]$ mentioned in Proposition.

5. Let $\tau(M)$ be the tangent bundle over M. Then $A(M) = \Gamma(\tau(M))$ (=the space of vector fields) becomes a Lie algebra over M under the natural bracket operation and admits \mathcal{E} as the representation space via the usual differentiation. As M. V. Losik [2] has shown that the cohomology group of the differential complex induced from this representation is isomorphic to $H^*(B(\tau^c), \mathbf{R})$; here $B(\tau^c)$ denotes the principal U(n)-bundle over M associated to $\tau(M) \otimes C$. Moreover, this complex has the stable jet range ≥ 1 and the elliptic jet range ≥ 0 . (The subcomplex with order 0 is nothing but the de rham complex over M.) We denote by D(k) the space of the k-th differential operators on M and by T(a, b) the tensor space with type (a, b) on M.

Theorem 1. The cohomology groups of the differential complexes induced from the representations of A(M) on D(k) and T(a, b) are described as follows:

Representation space	D(k)	T(a,b)
Representation	Bracket as differential operator	Lie differentiation
Stable jet range	$\geq k$	$\geq \operatorname{Max}\{n(b-a+1),1\}$
Elliptic jet range	$\geq k$	≧1
Cohomology group	$H^*(B(\tau^C), \mathbf{R})$	0 if $a > b$? otherwise

Let \mathcal{E}^h for the *h*-dimensional trivial bundle over *M*.

 $\Gamma(\tau(M) \oplus \varepsilon^n)$ admits a structure of Lie algebra over M, given by the bracket operation

$$\left[\boldsymbol{\xi} \oplus \sum_{i=1}^{h} f_{i}, \boldsymbol{\eta} \oplus \sum_{i=1}^{h} g_{i} \right] = [\boldsymbol{\xi}, \boldsymbol{\eta}] \oplus \sum_{i=1}^{h} (\boldsymbol{\xi} g_{i} - \boldsymbol{\eta} f_{i}).$$

This Lie algebra, denoted by $D_{\hbar}(1)$, operates on \mathcal{E} in two ways such that (3) $(\xi \oplus \sum f_i)\varphi = \xi \varphi$

(4)
$$(\xi \oplus \sum f_i) \varphi = \xi \varphi + \sum f_i \varphi,$$

each of which gives a representation of $D_h(1)$ on \mathcal{E} . Corresponding to these representations, we obtain the two differential complexes:

$$(3') \qquad \cdots \longrightarrow C^p[\tau(M) \oplus \varepsilon^h, \varepsilon^1] \xrightarrow{d'} C^{p+1}[\tau(M) \oplus \varepsilon^h, \varepsilon^1] \longrightarrow \cdots$$

$$(4') \qquad \cdots \longrightarrow C^p[\tau(M) \oplus \varepsilon^h, \varepsilon^1] \xrightarrow{a} C^{p+1}[\tau(M) \oplus \varepsilon^h, \varepsilon^1] \longrightarrow \cdots$$

Theorem 2. i) The differential complex (3') has the stable jet range ≥ 1 and the elliptic jet range ≥ 0 ; its cohomology group is isomorphic to $H^*(B(\tau^c) \times T^h, \mathbf{R})$ where T^h denotes the h-dimensional torus.

ii) The differential complex (4') has the stable jet range ≥ 1 and the elliptic jet range ≥ 0 .

The details will be discussed in the forthcoming paper.

References

- I. M. Gelfand and D. B. Fuks: Cohomologies of Lie algebra of tangential vector fields on a smooth manifold. I, II. Functional Analysis and their Application, 3, 194-210 (1969); 4, 110-116 (1970).
- [2] M. V. Losik: On the cohomologies of infinite-dimensional Lie algebras of vector fields. Functional Analysis and their Application, 4, 127-135 (1970).

No. 2]