No. 3]

43. Some Characterizations of σ - and Σ -Spaces

By Jun-iti NAGATA*)

Department of Mathematics, University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M. J. A., March 13, 1972)

M-space and σ -space are important generalizations of metric space into two different directions. (See [2], [9]. As for general terminologies and symbols in general topology, see [4]. All spaces in the following are at least T_1 except in the Definition, and all maps (=mappings) are continuous.) It is well-known that they not only represent two aspects of metrizability but also they combined together imply metrizability itself if the space is T_2 . *M*^{*}-space is an interesting and useful generalization of *M*-space (due to [1]), and Σ -space (due to [3]) is interesting since it generalizes two different types of spaces, *M*^{*}- and (regular) σ spaces at the same time and still has some nice properties. (A space *Y* is called a Σ -space if it has a sequence $\mathbb{C}_1, \mathbb{C}_2, \cdots$ of locally finite closed covers satisfying the following condition:

(Σ) If $y_n \in C(y, CV_n) = \bigcap \{V | y \in V \in CV_n\}, n = 1, 2, \dots$, then $\{y_n\}$ clusters).

We have characterized M^* -space and σ -space as follows.

Theorem 1. Y is an M^* -space if and only if there is a perfect map from an M-space X onto Y.

Theorem 2. The following are equivalent for a regular space Y.

i) Y is a σ -space,

ii) there is a half-metric space (X, X') and a perfect map f from X onto Y such that f(X') = Y,

iii) there is a half-metric space (X, X') and a closed (continuous) map f from X onto Y such that f(X') = Y.

Theorem 1 and the equivalence of i) and ii) in Theorem 2 were announced in [6], [7] and proved in [8]. As for the condition iii) in Theorem 2, it is obvious that ii) implies iii), and it is also easy to show by use of Theorem 1 of [10] that iii) implies i).

The main purpose of the present paper is to prove Theorem 3 in the following.

Definition. A pair (X, X') of a topological space X and its subspace X' is called a *half-M-space* if X has a sequence U_1, U_2, \cdots of open covers such that

i) $U_1 > U_2^* > U_2 > U_3^* > \cdots$,

^{*)} Supported by NSF Grant, GP-29401.

ii) if $x \in X'$ and $x_n \in S(x, U_n)$, $n = 1, 2, \dots$, then the point sequence $\{x_n\}$ has a cluster point in X.

Now the reader will agree with us upon that the following theorem is a quite natural conclusion to be compared with the previous two theorems, because half-M-space is a generalization of both M-space and half-metric space.

Remark. Precisely speaking, a half-metric space (X, X') is half-*M* provided X is normal. We may revise the definition of half-metric space in [6]–[8] as follows. A pair (X, X') of a topological space X and its subspace X' is called a half-metric space if X has a sequence $U_1, U_2,$ \cdots of open covers such that i) $U_1 > U_2^* > \cdots$, ii) for each $x \in X'$ and every nbd (=neighborhood) U of x in X, there is n for which $S(x, U_n)$ $\subset U$. Then every half-metric space in the revised sense is unconditionally half-M while Theorem 2 remains true for half-metric spaces in the revised sense.

Theorem 3. Y is a Σ -space if and only if there is a half-M-space (X, X') and a perfect map f from X onto Y such that f(X') = Y.

To prove this theorem we need the following lemma.

Lemma. Y is a Σ -space if and only if there is a subspace X of a Baire's 0-dimensional metric space N(A) and a multivalued map f from X onto Y such that

- i) $f(x) \neq \emptyset$ for every $x \in X$,
- ii) f(F) is closed in Y for every closed set F of X,
- iii) $f^{-1}(y)$ is a (non-empty) compact set for each $y \in Y$,

iv) for each $y \in Y$ there is $x \in f^{-1}(y)$ such that if $y_n \in f(S_{1/n}(x))$, $n=1, 2, \cdots$, then $\{y_n\}$ clusters in Y, where $S_{\epsilon}(x)$ denotes the ϵ -nbd of x.

Proof of Lemma. Sufficiency. Let $\{U_n | n=1, 2, \dots\}$ be a sequence of locally finite closed covers of X such that mesh $U_n \rightarrow 0$. Then \mathcal{O}_n $= f(\mathcal{U}_n) = \{f(U) | U \in \mathcal{U}_n\}, n=1, 2, \dots$ are locally finite closed covers of Y because of ii) and iii). Assume that $y_n \in C(y, \mathcal{O}_n), n=1, 2, \dots$ in Y. Then choose $x \in f^{-1}(y)$ satisfying iv) and also choose $U_n \in \mathcal{U}_n, n=1, 2, \dots$ \dots such that $x \in U_n$. Then $y_n \in f(U_n)$. Since diameter $U_n \rightarrow 0$, it follows from iv) that $\{y_n\}$ clusters. Thus Y is Σ .

Necessity. Let Y be a Σ -space with a sequence $\mathbb{C}_{1}, \mathbb{C}_{2}, \cdots$ of locally finite closed covers satisfying (Σ). Let $\mathbb{C}_{n} = \{V_{\alpha} \mid \alpha \in A_{n}\}, n=1,$ 2, \cdots . We may index all \mathbb{C}_{n} as $\mathbb{C}_{n} = \{V_{\alpha}^{n} \mid \alpha \in A\}$, where $A = \bigcup_{n=1}^{\infty} A_{n}$, and $V_{\alpha}^{n} = \emptyset$ for $\alpha \in A - A_{n}$. We may also assume that the intersections of any members of \mathbb{C}_{n} belong to \mathbb{C}_{n} . Let $X = \{(\alpha_{1}, \alpha_{2}, \cdots) \in N(A) \mid V_{\alpha_{1}}^{1} \cap V_{\alpha_{2}}^{2} \cap \cdots \neq \emptyset\}$, where N(A) denotes the Baire's 0-dimensional metric space with index set A, i.e. the countable product of the discrete space A. Define a multivalued map f from X to Y by $f(\alpha_{1}, \alpha_{2}, \cdots) = V_{\alpha_{1}}^{1} \cap V_{\alpha_{2}}^{2}$ $\cap \cdots$ for $(\alpha_{1}, \alpha_{2}, \cdots) \in X$. Then i) is obviously satisfied. Since each \mathbb{CV}_n is a locally finite closed cover, ii) and iii) can be proved in a similar way as in the proof of Theorem 1 of [5]. It is also easy to prove iv). Let $y \in Y$, then since $C(y, \mathbb{CV}_n) \in \mathbb{CV}_n$, we may let $C(y, \mathbb{CV}_n) = V_{\alpha_n}^n$, n=1, $2, \cdots$. Now $x = \alpha_1, \alpha_2, \cdots$) is obviously a point in $f^{-1}(y)$ satisfying iv).

Proof of Theorem 3. Sufficiency. Let U_1, U_2, \cdots be a sequence of open covers of X satisfying i), ii) in Definition. Then, as observed in [11], it follows from i) that for each *i* there is a locally finite open cover CV_i of X with $CV_i < U_i$. Let $\overline{CV}_i = \{\overline{V} | V \in CV_i\}, f(\overline{CV}_i) = W_i$. Then $\{W_i | i=1, 2, \cdots\}$ is easily seen to be a sequence of locally finite closed covers of Y satisfying (Σ). Hence Y is a Σ -space.

Necessity. Let f be a multivalued map from a metric space S onto Y satisfying i)-iv) of Lemma. Let Z be a compact T_2 -space which contains S as a subspace. (There is such a space Z by virtue of Tychonoff's Theorem.) Then we define a subset X of the product space $Y \times S$ and its subset X' as follows.

 $X = \{(y, s) \in Y \times S | y \in f(s)\}, \\ X' = \{(y, s) \in X | \text{ if } y_n \in f(S_{1/n}(s)), n = 1, 2, \dots, \text{ then } \{y_n\} \\ \text{ clusters in } Y\}.$

Furthermore we denote by π_S and π_Y the projections from X onto S and Y respectively. First we can prove that X is a closed set in $Y \times Z$. Let $(y, z) \in Y \times Z - X$; then since $f^{-1}(y)$ is a compact set of S by iii) of Lemma, it is closed in Z satisfying $z \notin f^{-1}(y)$. Hence there are open sets W and W' in Z such that $z \in W$, $f^{-1}(y) \subset W'$ and $W \cap W' = \emptyset$. By ii) of Lemma V = Y - f(S - W') is an open nbd of y in Y. Therefore $V \times W$ is a nbd of (y, z) in $Y \times Z$. We claim that $V \times W$ is disjoint from X. To prove it, let $p = (v, w) \in V \times W$. If $w \notin S$, then $p \notin X$. If $w \in S$, then $w \in S - W'$, and hence $f(w) \cap V = \emptyset$. This implies that $v \notin f(w)$, and hence $p = (v, w) \notin X$. Therefore our claim is proved. Namely X is closed in $Y \times Z$.

Now, we can prove that (X, X') is a half-*M*-space. Let $\mathcal{O}_n, n=1$, 2, \cdots be open covers of *S* with mesh $\mathcal{O}_n \to 0$ such that $\mathcal{O}_1 > \mathcal{O}_2^* > \cdots$. Then $\mathcal{O}_n = \pi_S^{-1}(\mathcal{O}_n)$, $n=1, 2, \cdots$ are open covers of *X* satisfying $\mathcal{O}_1 > \mathcal{O}_2^* > \cdots$. Let $x=(y,s) \in X'$, and $x_n=(y_n, s_n) \in S(x, \mathcal{O}_n)$, n=1, 2, \cdots in *X*. Then $s_n \in S(s, \mathcal{O}_n)$, $n=1, 2, \cdots$ in *S*, and $y_n \in f(s_n)$. Hence by the definition of *X'*, there is a cluster point y' of $\{y_n\}$. Now (y', s) is cluster point of $\{x_n\}$ in $Y \times S$. Since *X* is closed in $Y \times S$, $(y', s) \in X$. This proves that (X, X') is a half-*M*-space.

Finally we can prove that π_Y is a perfect map from X onto Y such that $\pi_Y(X') = Y$. $\pi_Y(X') = Y$ follows directly from iv) of Lemma and the definition of X'. π_Y is obviously continuous. For each $y \in Y$, $\pi_Y^{-1}(y)$ is homeomorphic to $f^{-1}(y)$ which is compact by iii) of Lemma. Thus the only thing we have to prove is that for every closed set C of X, $\pi_Y(C)$ is

J. NAGATA

closed in Y. Since X is closed in $Y \times Z$, so is C. Let $y \in Y - \pi_Y(C)$. Then for each $z \in Z$, there are open abds U_z of y and V(z) of z such that $(U_z \times V(z)) \cap C = \emptyset$. Cover the compact set $\{y\} \times Z$ with $U_{z_1} \times V(z_1)$, $\dots, U_{z_k} \times V(z_k)$. Then $U = U_{z_1} \cap \dots \cap U_{z_k}$ is a abd of y disjoint from $\pi_Y(C)$. Thus $\pi_Y(C)$ is closed in Y proving Theorem 3.

References

- T. Ishii: On closed mappings and M-spaces. I. Proc. Japan Acad., 43, 752-756 (1967).
- [2] K. Morita: A survey of the theory of *M*-spaces. General Topology and its Applications, 1, 49-55 (1971).
- [3] N. Nagami: Σ-spaces. Fund. Math., 65, 169-192 (1969).
- [4] J. Nagata: Modern General Topology. Amsterdam-Groningen (1968).
- [5] ——: On multi-valued mappings and generalized metric spaces. Proc. Japan Acad., 46, 936-940 (1970).
- [6] ——: Problems on generalized metric spaces. II (to appear in Proc. Houston Topology Conference (1971)).
- [7] ——: A Survey of the Theory of Generalized Metric Spaces (to appear in Proc. 3rd Prague Symposium on General Topology (1971)).
- [8] ——: Some theorems on generalized metric spaces (to appear in 'Hausdorff Gedenkschrift' (1972)).
- [9] A. Okuyama: A survey of the theory of σ -spaces. General Topology and its Applications, 1, 57-63 (1971).
- [10] F. Siwiec and J. Nagata: A note on nets and metrization. Proc. Japan Acad., 44, 623-627 (1968).
- [11] A. H. Stone: Paracompactness and product spaces. Bull. AMS, 54, 977-982 (1948).