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4. A Remark on Integral Equation in a Banach Space

By Kenji MARUO and Naoki YAMADA

(Comm. by Kosaku YOSIDA, M. J. A., Jan. 12, 1973)

1. Introduction and main theorem.
The main object of this paper is to extend the result of G. Webb
[1] on the solution of the integral equation associated with some non-

linear equation of evolution in a Banach space to the time dependent
case.

Let E be a Banach space with norm || ||.

Let A(t) (0<t<T) be alinear accretive operator which satisfies the
conditions of T. Kato [2], H. Tanabe [3] or T. Kato and H. Tanabe [4],
and B(t) be a nonlinear, accretive, everywhere defined operator such
that (¢, 4)—B(t)u is a strongly continuous mapping from [0, T1X E to E
which maps bounded sets to bounded sets. It is known that there
exists an evolution operator U(t,z) 0=<c<t<T with norm =1 to the
linear equation du(t)/dt+ A(t)u(t)=0, and that A(t) is m-accretive for
tel0,T].

Then we can state our main theorem.

Theorem. Under our assumption, for any x ¢ E, = € [0, T[, there
exists a unique solution w(t, r; x) to the integral equation

) w(t,r; 2)=U(t, r)x—-JtU(t, 8)B(s)u(s, r; x)ds

on [z, T1. If we define W(t, o)x=u(t, r; x), then W(t, ) has the follow-
ing evolution properties and an inequality,

(1) W,o)=WEtOYWt,z), WE,t)=I for 0Z<t/<t<T

(2) W(t, t)x is strongly continuous in 0<r=t<T

(3) W, De—W(E, Dyl =llz—vl

The authors wish to thank Professor H. Tanabe for his advices.

2. Proof of the theorem.

The main idea of the proof is due to G. Webb [1].

Proposition 1. Forany xze E,z e [0, T[, there exists T(z<T,=T)
and a continuous function u(t,; x): [z, T—E such that u(t,z; x) is a
solution of (E) on [z, T,).

Proof. Let xc E,zc[0, T[ be fixed. In view of the continuity of
B(t)x, for any £>>0 there exists a positive number § depending on z, z, ¢,
such that for any v € V={v: |x—v| <é} and any ¢, |t —r|<d the inequali-
ty |B(t)v—B(z)x||<e hold. Take M=|B(r)x|+e¢ then ||B()v|<M for
any veV and t,|t—z|<6. Under the assumptions of [2] or [3] we
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take the sequence «, € D(A(t)) such that x, converges to x, and in case
of [4] we put z,=x. We write v=U(, t)x,4+w. Then we can choose
T,>7 and a large positive integer N such that v are points in V for
any integer n=N, any number ¢; c<t<T, and any point we E; | o]
<(T,—oM. Let Ty=Min{T,,z+46}. For any positive integer n=N,
let tr=r7,u,(t")=x,. Inductively, for each positive integer 7, define
or, t?, and u,(t7,) such that

(i) 0=éop,th +or=T,

) if Je—u, ()M +Max,y_cocor_ 1o ITUG, t2) —TTu, (-0 |
then Sup,?_,<i<i7_,40 | B®)2—B(trJu,(t2,) |<1/n and 67 is the largest
number such that (i) and (ii) hold.

Define t?=t?_,+6? and for each t ¢ [t} ,, 7] define

2.1 U () =UE, 2 Dua (7)) — ; U(t, s)B(t7 _)u,(t;_ds.
It is easy to see that for ¢ e [t7_,, ]

2.2) wO=Ut, D, 3, [0 Ut 9Bt )ds

ti-1
b
s U(t S)B(t_pu,(t;_)ds.

By the same argument as G. Webb [1]1, we see that u,(t) ¢ VN D(A(t))
and
2.3) Sup;?_, <zt || BOUA(D) — BEDu, () |=1/n
by the estimate of |ju,(£) —u,(t7-,)| and (2.1).
If ¢t e ltr,, t2[, u,(t) is differentiable at ¢ and
2.4) (1) = — (ABu,(t) + BT Dun(t7-,)).
We will show that there exists some positive integer L such that
tr=T, Assume that ¢ <T, for all 7. Following the same method as
[1] we see that lim,_.. u,(t?) exists. Let z,=lim,_.,u,(t}) and ¢,=lim,_.. 7.
Choose «>0 and B,>0 such that if |[z—z||<a, |t—1)|<B, then ||B(t)z
—B(t)#%,|<1/4n. Noting that {u,(t?)};, is compact there exists 5,>0
such that if tr, <t<t7 48, then |[U(, t72) —ITu,(t7 )| <a/4 for all i.
Let g=Min {3,, 5.} and choose & so large that
<af/AM, 01 <B, U (tp)—2||<a/4d and E—B<tr.
If
12—, (oD | S 2M +Maxep o,z ILUE, to) —TTua (82 ) || +a /4
then arguing as in Webb [1] we know
| B(t)z—B(tz_Du.(E-) ||
< || B®)z—B(t)z| + | Bltzo— Btz (7. | <1/2.
This contradicts the definition of 67, so there exists some integer L
such that t»=T, Next we will show that continuous function u,(f)
converges uniformly on [z, T,]l. Define P, ,(t)=|u,(t) —u,(®)| and let
te 1z, T, be such that ¢t € 1¢™,, t7[ and ¢ e 1t2_,, t2[ for some integer 7, k.
In view of (2.3) and (2.4)



No. 1] Remark on Integral Equation 15

P ()= lhlgl 1/h{)| 60 () — U (8) — RICA(®) + B(@)un(8)

—(A®) +BE)Un ]| —[| %a(t) — () [}
I BOUAE) — B (-0) |+ BOUAE) — B (E7-) |
<1l/n+1/m.
Here we used the accretiveness of A(t)+B(t). Hence we have
P w20 — 0 ||+ (Ty—o)A /n+1/m)

and so u,(t) converges uniformly to a continuous function u(t,z; x).
From (2.3) and noting that B(s)u,(s) converges to B(s)u(s, r; x) for each
s as n—oo and || B(s)u,(8) || M for s ¢ [z, T ], using Lebesgue’s theorem,
we see that u(t, ¢ ; «) satisfies the equation () on [z, T,].

Proposition 2. Let u(t,z; x) and v(t, z; y) be the solutions of (F)
on [z, T\1 and [z, T,] for any =,y € B, respectively. Then we find
(2.5) ut, z; ) —v@, ; WI=|e—y|
forany t; c<t=min{T,, T,}. Consequently the solution of (E) is unique
and satisfies the relation
(2.6) w(t, v; 2)=ult, t’; ul, ;)
fortand t';c<t'<t<T,.

Proof. Take sequences {x,}>_, and {y,};_, as in the proof of Proposi-
tion 1. Let {t7}r, be a partition of [z, min {T, T,}] for each n. Define
for t e [tr_, t7]

u,(t; 2)=U(t, )z, —:Zl ti U(t, s)B(tr_Ju(tr., 7 ; ©)ds

=1Jt;—

—(. v, 9B yuttr,, o5 9)ds

bk —1
and v,(t, y) similarly. It is easy to see that u,(t; ) and v,(t;y) are
differentiable for ¢ e 1t7_,, t2[ and
Un(t; @) = —(ADu,(t; ©)+ Btz Julty_,, t; x))
and similarly for v,(¢; ¥). Furthermore u,(t; ) and v,(¢; ) converge
uniformly to wu(t,z; x) and v(t,r; y) respectively as the mesh of {¢7}
goes to zero with n. Let P,(t)=|u,(t; x)—v,(t;y)||. By the same
argument as in Proposition 1, we obtain
@ P/ () Z|| B(Hu,(t ; ®) —B(t:_Ju(ty_,, v ; @) ||
+HIB@®v,(t; ¥) —Btp_ vt 75 Wl
Using Lebesgue’s theorem we obtain
lim P,() < ||z —y|.

Hence the uniqueness of the solution follows at once. On the other
hand we know (2.6) from the uniqueness of the solution.
Proposition 3. For any xc E, v [0, T[ the solution u(t,z; x) of
(E) exists on [z, T1.
Proof. Assume that u(¢,z; x) exists on [z, T,[ for some T,<T.
First we will show that
31;53 lu(t, z; ©)|=C
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where C is a constant which depends only T, B and . Let 7" be fixed
such that :<T'<T,. On [z, T’] we define the approximating function
u,(t; 2) as in the proof of Proposition 2 and define P,(t)=|u.(t; x)].
Then we find

P/ Z|| B0+ Bu,(t ; ) — B(ty_Julty_y, w5 2) ||
as Proposition 2 and so for ¢ e [t7_,, t7]

PO+ [ 1 B0 ds
+:§:_11 23_ “B(s)u”(s’ x)—B(t?—l)u(t?-n 75 x)llds

+IZ | B(s)u,(s ; ®) — B(tz_)ulty_,, ;5 2) | ds.

The third and fourth terms tend to zero as the mesh goes to zero with
n— oo, and hence we obtain

Jutt, o3 @)=+ [ |1B@o|ds

on [z, T"], but the right hand side is independent of 7. So we obtain
the boundedness of u(t,z; ) on [z, T,[. Let h,h >0, h—h'=0, Ty—h
=7 and let us estimate |w(Ty—h,7; 2)—u(Ty—h,7z;x)||. Using the
assumption on B(t) and the boundedness of u(t,z; x) just shown, we
see that lim,,,, u(f, z; x) exists and so u(¢,z; ) can be continued past
T,.

Proposition 4. Define W(t, t)e=u(t, t; x), then W(t, t)x satisfies
the properties stated in the theorem.

Proof. It remaing only to prove the continuity of W(t,z). Let
t<7'<t then from (2.5), (2.6)

lu(t, z; ) —ult, o ;o) | ||\ ul', v 5 ) —x|.

Hence u(t, r; x) is continuous in = and t: 0<z<t<T. So the theorem
is proved.
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