29. A Characterization of Submodules of the Quotient Field of a Domain

By Tokuo Iwamoto
(Comm. by Kenjiro Shoda, m. J. A., Feb. 12, 1973)

1. Introduction. Let D be an elementary unique factorization domain with identity and K its quotient field. Let \boldsymbol{P} be the set of the prime elements of D, and we consider the set \boldsymbol{F} of the maps f from \boldsymbol{P} into $Z \cup\{-\infty\}$ (the set of integers and negative infinity), provided that there exists only a finite number of prime elements p such that $f(p)>0$ for each map f of \boldsymbol{F}. Let $M(f)$ be the set of the elements $x \in K$ with $V_{p}(x) \geq f(p)$ for all $p \in \boldsymbol{P}$, where V_{p} denotes the p-valuation of K. Then we can prove that $M(f)$ is a D-module, which is called an f-module. Now in [2], R. A. Beaumont and H. S. Zuckerman have characterized the additive groups of rational numbers. The purpose of this paper is to extend the results in [2] for an elementary unique factorization domain D and to investigate D-submodules of K related with f-modules.

The author is thankful to Professor K. Murata for his valuable advices.
2. Properties of \boldsymbol{f}-modules in an elementary unique factorization domain.

Let D be an elementary unique factorization domain (abv. EUFD) with the quotient field K, and let \boldsymbol{P} be the set of all prime elements. Let a be a non-zero element of D and $a=\Pi_{j=1}^{s} p_{j}^{n_{j}}\left(n_{j}\right.$: positive integers) the factorization of a into prime factors. We define the valuation of K in the following way. We consider the map v_{p} of D into non-negative integers: $v_{p}(\alpha)=n_{j}, v_{p}(0)=\infty$ for all p, and extend v_{p} to K as follows: $V_{p}(a)=v_{p}(a c)-v_{p}(c)$, where $0 \neq a \in K$ and $a c \in D$ with $0 \neq c \in D$. It is easy to see that the map V_{p} of K into integers does not depend on the choice of c, and satisfies the above conditions of the p-valuation. If $f(p)=0, f \in \boldsymbol{F}$, for all prime elements p, it is easily verified that $M(f)$ $=D$.

Proposition 2.1. Let D be EUFD with the quotient field K. Then $M(f) \supseteq M\left(f^{\prime}\right)$ if and only if $f(p) \leq f^{\prime}(p)$ for each element p of \boldsymbol{P}.

Proof. "If part" is evident. Suppose that $M(f) \supseteq M\left(f^{\prime}\right)$, and assume that $f\left(p_{0}\right)>f^{\prime}\left(p_{0}\right)$ for some element p_{0} of \boldsymbol{P}. Let $\boldsymbol{Q}=\left\{p_{k_{1}}, \cdots, p_{k_{r}}\right\}$ be the set of the primes with $f\left(p_{k_{j}}\right)>0$ or $f^{\prime}\left(p_{k_{j}}\right)>0(j=1, \cdots, r)$. If p_{0} is in \boldsymbol{Q}, we take out it from the set, and if $f^{\prime}\left(p_{0}\right)=-\infty$, we set $f^{\prime}\left(p_{0}\right)$ $=-n$ by taking an integer $n>0$ such that $f\left(p_{0}\right)>-n$. Let a
$=p_{0}^{f^{\prime}\left(p_{0}\right)} \Pi_{j=1}^{r} p_{k_{j}}^{f_{0}\left(p_{k_{j}}\right)}$, where $f_{0}\left(p_{k_{j}}\right)=\operatorname{Max}\left\{f\left(p_{k_{j}}\right), f^{\prime}\left(p_{k_{j}}\right)\right\} \quad(j=1, \cdots, r)$. Put $a=p_{0}^{f^{\prime}\left(p_{0}\right)}$, if the set Q is empty. Then $V_{p}(a)=0 \geq f^{\prime}(p)$ for primes p such that $p \neq p_{0}$ and $p \neq p_{k_{j}}(j=\mathrm{y}, \cdots, r), V_{p_{k_{j}}}(a)=f_{0}\left(p_{k_{j}}\right) \geq f^{\prime}\left(p_{k_{j}}\right)$, and $V_{p_{0}}(a)=f^{\prime}\left(p_{0}\right)<f\left(p_{0}\right)$. Hence we have $a \notin M(f)$ and $a \in M\left(f^{\prime}\right)$, a contradiction.

Corollary. $M(f)=M\left(f^{\prime}\right)$ if and only if $f(p)=f^{\prime}(p)$ for all primes p.
Proof. It is immediate from Proposition 2.1.
If EUFD D satisfies the following condition (c), it is denoted by D^{*}.
(c) Every principal ideal of D is maximal.

Let $a=\Pi_{j=1}^{s_{j}} p_{p}^{m_{j}}$ and $b=\Pi_{j=1}^{s} p_{j}^{n_{j}}$ be prime factorizations of a and b, where $\left\{p_{j}\right\}_{j=1}^{s}$ are all prime factors of a and b with $m_{j} \neq 0$ or $n_{j} \neq 0$. The element $\Pi_{j=1}^{s} p_{j}^{d_{j}}$ is called the greatest common divisor of a and b, and it is denoted by (a, b) where $d_{j}=\operatorname{Min}\left\{m_{j}, n_{j}\right\}(j=1, \cdots, s)$.

Lemma 1. Let M be a D^{*}-module. If $a, a^{\prime} \in M \cap D^{*}$, then (a, a^{\prime}) $\in M \cap D^{*}$.

Proof. If $a+a^{\prime}=\left(a, a^{\prime}\right)\left(b+b^{\prime}\right)$, then $\left(b, b^{\prime}\right)=1$. Thus if $b=\Pi_{i=1}^{s} p_{k_{i}}^{m_{i}}$ and $b^{\prime}=\Pi_{j=1}^{t} p_{k_{j}}^{n_{j}}$ are factorizations of b and b^{\prime} into prime factors, then $p_{k_{i}} \neq p_{k_{j}^{\prime}}$ for all i, j, and ($p_{k_{i}}$) and ($p_{k_{j}^{\prime}}$) are prime ideals. Therefore ($p_{k_{i}}$) $+\left(p_{k_{j}^{\prime}}\right)=(1)$ for all i, j, and thus $(b)+\left(b^{\prime}\right)=(1)$. Consequently, there exist d and d^{\prime} such that $d b+d^{\prime} b^{\prime}=1$ and $d, d^{\prime} \in D$. Therefore we have proved that $\left(a, a^{\prime}\right)=\left(a, a^{\prime}\right)\left(d b+d^{\prime} b^{\prime}\right)=d a+d^{\prime} a^{\prime} \in M \cap D^{*}$.

If there exist primes p_{i} with $V_{p_{i}}(a)>0$ for all elements a of $M \cap D^{*}$, we collect those primes, and let it be $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$.

Lemma 2. The element $E=\Pi_{i=1}^{n} p_{i}^{e_{i}}$ is contained in $M \cap D^{*}$, where $e_{i}=\operatorname{Min}\left\{V_{p_{i}}(x) \mid x \in M \cap D^{*}\right\}$.

Proof. We choose elements $a_{1}, a_{2}, \cdots, a_{n}$ with $V_{p_{i}}\left(a_{i}\right)=e_{i}$, $a_{i} \in M \cap D^{*}(i=1,2, \cdots, n)$. Now, let a_{0} be any element of $M \cap D^{*}$, and b_{1} be the element such that

$$
b_{1}=\left(a_{0}, a_{1}\right)=\left.p_{1}^{e_{1}} p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}} p_{r_{1}}^{k_{1}}\right|_{r_{2}} ^{k_{2}} \cdots p_{r_{s}}^{k_{s}}, \alpha_{i} \geq e_{i}\left(\alpha_{i}, k_{j}: \text { positive integers }\right) .
$$

Next, we choose elements $c_{1}, c_{2}, \cdots, c_{s}$ with $V_{p_{r_{i}}}\left(c_{i}\right)=0, c_{i} \in M \cap D^{*}(i=1$, $2, \cdots, s)$, and we take elements $b_{2}, b_{3}, \cdots, b_{s+1}$ as follows:

$$
\begin{aligned}
& b_{2}=\left(b_{1}, c_{1}\right)=p_{1}^{e_{1}} p_{2}^{\alpha_{2}^{\prime}} \cdots p_{n}^{\alpha_{n}^{\prime}} p_{r_{2}}^{k_{2}^{\prime}} \cdots p_{r_{s}}^{k_{s}^{\prime}}, \alpha_{i}^{\prime} \geq e_{i}, k_{j} \geq k_{j}^{\prime} \geq 0, \\
& b_{3}=\left(b_{2}, c_{2}\right)=p_{1}^{e_{1}} p_{2}^{\alpha_{2}^{\prime}} \cdots p_{n}^{\alpha_{n}^{\prime \prime}} p_{r_{3}}^{k_{s}^{\prime}} \cdots p_{r_{s}}^{k_{s}^{\prime}}, \alpha_{i}^{\prime \prime} \geq e_{i}, k_{j}^{\prime} \geq k_{j}^{\prime \prime} \geq 0, \\
& b_{s+1}=\left(b_{s}, c_{s}\right)=p_{1}^{e_{1}} p_{2}^{\alpha_{2}^{(s)}} \cdots p_{n}^{\alpha_{n}^{(s)}}, \alpha_{i}^{(s)} \geq e_{i} .
\end{aligned}
$$

Moreover we take the following elements:

$$
\begin{gathered}
h_{2}=\left(a_{2}, b_{s+1}\right)=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{\beta_{3}} \cdots p_{n}^{\beta_{n}}, \beta_{i} \geq e_{i}, \\
h_{3}=\left(a_{3}, h_{2}\right)=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} p_{4}^{\beta_{3}^{\prime}} \cdots p_{n}^{\beta_{n}^{n}}, \beta_{i}^{\prime} \geq e_{i}, \\
\cdots \cdots \cdots \cdots \cdots \\
h_{n}=\left(a_{n}, h_{n-1}\right)=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots p_{n}^{e_{n}} .
\end{gathered}
$$

Then $h_{n}=E$ and hence $E \in M \cap D^{*}$ by Lemma 1.
In the case of $\operatorname{Min}\left\{V_{p}(x) \mid x \in M \cap D^{*}\right\}=0$ for all primes p, E is a
unit of D^{*}. There exists an element E^{-1} in D^{*} and M is a D^{*}-module, so $1 \in M \cap D^{*}$. Hence we may assume without loss of generality that $E=1$. Any element of $M \cap D^{*}$ can be represented as $a E$, where $a \in D^{*}$. Moreover we can show that any element of M is in the form $q E$, where $q \in K$ and $V_{p_{i}}(q) \geq 0(i=1,2, \cdots, n)$. For, if $x \in M$, then there exists an element a of D^{*} such that $a x \in M \cap D^{*}$ and $(a x, a)=1$, and there exists an element a^{\prime} of D^{*} such that $a x=a^{\prime} E$. Let $a^{-1} a^{\prime}=q$, then $V_{p_{i}}(q) \geq 0$ for all i, and $x=q E$. We assume in the proof of the remaining properties that the elements of M are written in the form $q E$, where $q \in K$ and $V_{p_{i}}(q) \geq 0(i=1,2, \cdots, n)$.

Lemma 3. Let M be a $D^{*-m o d u l e . ~ I f ~} q E \in M, a q \in D^{*}$ and ($a q, a$) $=1$, then $a^{-1} E \in M$.

Proof. Take elements d and d^{\prime} of D^{*} such that $d a q+d^{\prime} a=1$. Then we have $a^{-1} E=a^{-1} E\left(d a q+d^{\prime} a\right)=d q E+d^{\prime} E \in M$.

Lemma 4. Let M be a D^{*}-module. If $q E \in M, q^{\prime} E \in M$ and ($a q, a$) $=\left(b q^{\prime} ; b\right)=(a, b)=1$, then $a^{-1} b^{-1} E \in M$, where $a, b, a q$ and $b q^{\prime}$ are elements of D^{*}.

Proof. By Lemma 3, $a^{-1} E$ and $b^{-1} E$ are contained in M. Since there exist elements d and d^{\prime} such that $d a+d^{\prime} b=1$, we have

$$
a^{-1} b^{-1} E=a^{-1} b^{-1} E\left(d a+d^{\prime} b\right)=d b^{-1} E+d^{\prime} a^{-1} E \in M
$$

Proposition 2.2. If M is any D^{*}-module, then M is represented as $M=M(f)$ for some $f \in \boldsymbol{F}$.

Proof. Put $V_{p}(M)=-\infty$, if there exists an element q of M such that $V_{p}(q)=-n$ for any positive integer n : and if not, put $V_{p}(M)$ $=\operatorname{Min}\left\{V_{p}(q) \mid q \in M\right\}$. Now, we define $f(p)=V_{p}(M)$. Then it is evident that $M \subseteq M(f)$. Conversely let x be any element of $M(f)$. Then it can be written in the form $x=q E(q \in K)$. Let $\left\{p_{r_{1}}, p_{r_{2}}, \cdots, p_{r_{s}}\right\}$ be the set of the prime elements such that $V_{p_{r_{i}}}(q)=n_{i}$ (n_{i} : negative integers). If $V_{p}(q) \geq 0$ for all primes p, then $q \in D^{*}$ and $x \in M$ since $E \in M$. So we can assume the existence of such elements. By the definition of $f\left(p_{r_{i}}\right)$ $=V_{p_{r_{i}}}(M)$, there exists an element $a_{i} p_{r_{i}}^{n_{i}} E$ of M for each i. Here we may assume that $a_{i} \in D^{*}$ and $V_{p_{r_{i}}}\left(a_{i}\right)=0$ for each i. By Lemma $3, p_{r_{i}}^{n_{i}} E \in M$ for each i, and then $\Pi_{i=1}^{s} p_{r_{i}}^{n_{i}} E \in M$ by Lemma 4. Consequently, $x=q E \in M$.

Theorem 1. There is one to one correspondence between the set of D^{*}-modules and \boldsymbol{F}.

Proof. It is straightfoward by Propositions 2.1 and 2.2.
Let $E=\Pi_{i=1}^{n} p_{i}^{f\left(p_{i}\right)}$ be a finite product of all prime elements such that $f\left(p_{i}\right)>0$ in an f-module $M(f)$ of EUFD D. Then any element of $M(f)$ is written in the form $q E\left(q \in K, V_{p_{i}}(q) \geq 0\right)$. But if $f(p) \leq 0$ for all primes p, then we can take as $E=1$.

Theorem 2. Let D be EUFD. If $M(f)$ and $M\left(f^{\prime}\right)$ are D-modules, then the following conditions are equivalent.
(1) $M(f)$ is isomorphic to $M\left(f^{\prime}\right)$.
(2) $f(p)=f^{\prime}(p)$ for almost all p, and whenever $f(p) \neq f^{\prime}(p)$, both are not $-\infty$. Every isomorphism between $M(f)$ and $M\left(f^{\prime}\right)$ is given by $q E \leftrightarrow g q E^{\prime}$, where $E=\Pi_{i=1}^{r} p_{i}^{f^{\left(p_{i}\right)}}, f\left(p_{i}\right)>0, E^{\prime}=\Pi_{j=1}^{s} p_{j}^{f^{\prime}\left(p_{j}\right)}, f^{\prime}\left(p_{j}\right)>0$, and $V_{p}(g)=f^{\prime}(p)-f(p)-V_{p}\left(E^{\prime}\right)+V_{p}(E)$ for all primes p with $f(p) \neq-\infty$ and $f^{\prime}(p) \neq-\infty$.

Proof. The proof is similar to the one of Corollary 3 in [2].
Proposition 2.3. Let D be EUFD, and let $M(f)$ and $M\left(f^{\prime}\right)$ be f modules of D. Then the set $M=\left\{m m^{\prime} \mid m \in M(f), m^{\prime} \in M\left(f^{\prime}\right)\right\}$ is a D module.

Proof. Let $f_{0}(p)=f(p)+f^{\prime}(p)$ for $p \in \boldsymbol{P}$. Then it is evident that $M \subseteq M\left(f_{0}\right)$. Now let x be any element of $M\left(f_{0}\right)$ and $x=\Pi_{i=1}^{s} p_{i}^{n_{i}}$ the factorization of x into prime factors. Since $n_{i} \geq f_{0}\left(p_{i}\right)=f\left(p_{i}\right)+f^{\prime}\left(p_{i}\right)$ for all p_{i}, we have $p_{i}^{n_{i}}=p_{i}^{m_{i}} p_{i}^{f\left(p_{i}\right)} p_{i}^{f^{\prime}\left(p_{i}\right)}$ for all p_{i} (m_{i} : non-negative integers). We write $a=\Pi_{i=1}^{s} p_{i}^{m_{i}}$. Then $x=\left(a \Pi_{i=1}^{s} p_{i}^{f\left(p_{i}\right)}\right) \Pi_{i=1}^{s} p_{i}^{f^{\prime}\left(p_{i}\right)}$. Since $a \in D$ and $a \Pi_{i=1}^{s} p_{i}^{f\left(p_{i}\right)} \in M(f)$, we have $x \in M$.
3. Subrings with the form $M(f)$.

Proposition 3.1. Let D be EUFD with the quotient field $K . M(f)$ is a subring of K containing D if and only if $f(p)=0$ or $f(p)=-\infty$ for all prime elements p.

Proof. Let $f(p)=0$ or $f(p)=-\infty$ for all p. Then $V_{p}(a b)=V_{p}(a)$ $+V_{p}(b) \geq f(p)+f(p)=f(p)$ for $a, b \in M(f)$. Hence $a b \in M(f)$. Conversely we assume that D is EUFD and $M(f)$ is a subring of K such that $M(f) \supseteq D$. It is obvious that $f(p) \leq 0$ for all p. If $f\left(p_{0}\right) \neq-\infty$ and $f\left(p_{0}\right)<0$ for some p_{0}, then $a=p_{0}^{f\left(p_{0}\right)} \in M(f)$ since $f(p) \leq 0$ for all p. Then $a^{2}=p_{0}^{2 f\left(p_{0}\right)} \in M(f)$ since $M(f)$ is a ring. On the other hand, $V_{p_{0}}\left(a^{2}\right)$ $=2 f\left(p_{0}\right)<f\left(p_{0}\right)$ since $f\left(p_{0}\right)<0$. It contradicts the containment $a^{2} \in M(f)$.

Lemma 5. Let D be EUFD and let $M(f)$ and $M\left(f^{\prime}\right)$ be subrings of K, each of which contains D. If we define $f_{0}(p)=\operatorname{Min}\left\{f(p), f^{\prime}(p)\right\}$ for all p, then $M\left(f_{0}\right)$ is a subring which contains both $M(f)$ and $M\left(f^{\prime}\right)$, and $M\left(f_{0}\right)$ is unique minimal in such subrings.

Proof. It is clear that $M(f) \subseteq M\left(f_{0}\right)$ and $M\left(f^{\prime}\right) \subseteq M\left(f_{0}\right)$. If $M\left(f_{1}\right)$ contains $M(f)$ and $M\left(f^{\prime}\right)$, then $f(p) \geq f_{1}(p)$ and $f^{\prime}(p) \geq f_{1}(p)$ for all p by Proposition 2.1. Hence $f_{0}(p) \geq f_{1}(p)$. We have therefore $M\left(f_{0}\right) \subseteq M\left(f_{1}\right)$.

The ring $M\left(f_{0}\right)$ considered in Lemma 5 is denoted by $M(f) \cup M\left(f^{\prime}\right)$.
Lemma 6. Let $D, M(f)$ and $M\left(f^{\prime}\right)$ be as above. If we define $f_{0}(p)$ $=\operatorname{Max}\left\{f(p), f^{\prime}(p)\right\}$, then $M\left(f_{0}\right)=M(f) \cap M\left(f^{\prime}\right)$.

Proof. It is evident that $M\left(f_{0}\right) \subseteq M(f)$ and $M\left(f_{0}\right) \subseteq M\left(f^{\prime}\right)$ since $f_{0}(p) \geq f(p)$ and $f_{0}(p) \geq f^{\prime}(p)$. Then $M\left(f_{0}\right) \subseteq M(f) \cap M\left(f^{\prime}\right)$. Conversely, let x be an arbitrary element of $M(f) \cap M\left(f^{\prime}\right)$. Then $V_{p}(x) \geq f(p)$ and $V_{p}(x) \geq f^{\prime}(p)$. Hence we have $V_{p}(x) \geq \operatorname{Max}\left\{f(p), f^{\prime}(p)\right\}=f_{0}(p)$.

Lemmas 5 and 6 imply that the set of rings of the form $M(f)$ which
contains EUFD D forms a lattice. Moreover we set $f_{D}(p)=0$ and $f_{K}(p)=-\infty$ for all p. Then subrings of K contains D form a complemented lattice under inclusion, which has $K=M\left(f_{K}\right)$ as its greatest element and $D=M\left(f_{D}\right)$ as its least element, where the complement of $M(f)$ is $M(\underline{f})$ and \underline{f} is defined in the following way: $f(p)=0 \Rightarrow \underline{f}(p)$ $=-\infty, f(p)=-\infty \Rightarrow \underline{f}(p)=0$.

Next we define a vector $X(f)=\left(\cdots f\left(p_{2}\right) \cdots\right)\left(p_{\lambda} \in \boldsymbol{P}\right)$ and \boldsymbol{W} denotes the set $\left\{X(f) \mid f \in \boldsymbol{F}^{\prime}\right\}$, where \boldsymbol{F}^{\prime} is the subset of \boldsymbol{F} such that $f(p)=0$ or $f(p)=-\infty$ for all p. Let us define the order $X(f) \geq X\left(f^{\prime}\right)$ in the following way: $f\left(p_{\lambda}\right) \leq f^{\prime}\left(p_{\lambda}\right)$ for all $p \Longleftrightarrow X(f) \geq X\left(f^{\prime}\right)$. Then W forms a Boolean lattice under the above ordering.

Theorem 3. ${ }^{1)}$ Let D be EUFD with the quotient field K. Then the set of subrings of K, each of which contains D and has of the form $M(f)$ forms a Boolean lattice under inclusion.

Proof. $\{M(f)\}$ is lattice-isomorphic to W under the correspondence: $M(f) \leftrightarrow X(f)$.

Corollary. Let K be the quotient field of D^{*}. Then the set of subrings of K which contains D^{*} as its least element forms an atomic Boolean lattice.

Proof. It is verified by Proposition 2.2 and Theorem 3.

References

[1] K. Asano and K. Murata: Arithmetical ideal theory in semigroups. Journ. of Polytec., Osaka City Univ., 4, 1-33 (1953).
[2] R. A. Beaumont and H. S. Zuckerman: A characterization of the additive rationals. Pacific J. Math., 1, 169-177 (1951).
[3] K. Murata: On Dedekindean l-semigroups and its lattice-ideals. Proc. Japan Acad., 47, 132-134 (1971).

[^0]
[^0]: 1) cf: Theorem 5.11 in [1] and [3].
