27. On the Euler-Characteristic and the Signature of G-Manifolds*)

By Takeshi TANIGUCHI Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1973)

§ 0. Let W be a closed Riemann surface. A conformal self map of W will be called an automorphism. If G is a finite group of automorphisms of W, then the orbit space W/G is naturally a Riemann surface. In [1], [2] R. D. M. Accola proved certain formulas which relate the genera of W, W/G and W/H where H ranges over certain subgroups of G. He proved them using the Riemann-Hurwitz formula for the coverings $W \rightarrow W/G$ and $W \rightarrow W/H$.

The purpose of this note is to extend his results. In § 1 we shall prove formulas in the case of the Euler-characteristic of compact Hausdorff spaces on which a finite group G acts as the group of homeomorphisms. In § 2 we shall prove a formula in the case of the signature of closed connected oriented generalized 4k-dimensional manifolds over the field of real numbers on which a finite group G acts effectively and orientation preservingly as the group of homeomorphisms.

§ 1. Throughout this section let X be a compact Hausdorff space on which a finite group G acts and let the cohomology group $H^*(X)$ of X be the Céch cohomology group with real coefficients. Moreover let the groups $H^n(X)$ be finite dimensional, and zero for n > i (i is some integer). Since $H^*(X)$ is naturally a G-module, we have the submodule $H^*(X)^G$ consisting of all invariant elements of $H^*(X)$. Let X/G denote the orbit space and $p: X \rightarrow X/G$ the projection. Then the following lemma is known [3].

Lemma 1. The homomorphism $p^*: H^n(X/G) \rightarrow H^n(X)$ is the monomorphism and its image is $H^n(X)^G$.

Define a homomorphism $\varphi: H^n(X) \rightarrow H^n(X)$ by

$$\varphi(\alpha) = \frac{1}{|G|} \sum_{g \in G} g^*(\alpha) \qquad (\alpha \in H^n(X)).$$

Then it is easily seen that α is in $H^n(X)^G$ if and only if $\varphi(\alpha) = \alpha$. Therefore it holds that

$$\dim H^n(X)^G = \operatorname{trace} \varphi$$

$$= \frac{1}{|G|} \sum_{g \in G} \operatorname{trace} (g^* \colon H^n(X) {\rightarrow} H^n(X)).$$

^{*} Dedicated to Professor Shigeo Sasaki on his 60th birthday.

Denote by $\chi(X)$ the Euler-characteristic of X, and by $\chi(g)$ the Lefschetz number of $g: X \rightarrow X$, i.e.

$$\chi(X) = \sum_{n} (-1)^n \dim H^n(X)$$

$$\chi(g) = \sum_{n} (-1)^n \operatorname{trace} (g^* : H^n(X) \to H^n(X)).$$

We note that $\chi(X) = \chi(e)$ for the unit element e of G.

Then we have

Lemma 2. If X is a compact Hausdorff space on which a finite group G acts, then it holds

$$|G|\chi(X/G) = \sum_{g \in G} \chi(g)$$

where |G| is the order of G.

We shall prove

Theorem 1. Let X be a compact Hausdorff space on which G acts and let G_1, G_2, \dots, G_s be subgroups of G such that $G = \bigcup_{k=1}^s G_k$. For indices $1 \le i < j < \dots < k \le s$, put

$$\chi_{i,j,\ldots,k} = \chi(X/(G_i \cap G_j \cap \cdots \cap G_k))$$

$$n_{i,j,\ldots,k} = |G_i \cap G_j \cap \cdots \cap G_k|.$$

Put also $\chi_0 = \chi(X/G)$, $n_0 = |G|$. Then it holds

$$n_0 \chi_0 = \sum_{1 \le i \le s} n_i \chi_i - \sum_{1 \le i < j \le s} n_{i,j} \chi_{i,j} + \sum_{1 \le i < j < k \le s} n_{i,j,k} \chi_{i,j,k}$$
 $- \cdots - (-1)^s n_{1,2,\dots,s} \chi_{1,2,\dots,s}.$

Proof. Applying Lemma 2 to G and $G_i \cap G_j \cap \cdots \cap G_k$, we get

$$\chi = n_0 \chi_0 + q_0
\chi = n_{i,j,\dots,k} \chi_{i,j,\dots,k} + q_{i,j,\dots,k}$$

where $\chi = \chi(X)$, $q_0 = -\sum_{e \neq g \in G} \chi(g)$, $q_{i,j,\dots,k} = -\sum_{e \neq g \in G_i \cap G_j \cap \dots \cap G_k} \chi(g)$. On the other hand, inductive arguments show

$$q_0 = \sum_{1 \le i \le s} q_i - \sum_{1 \le i < j \le s} q_{i,j} + \sum_{1 \le i < j < k \le s} \epsilon_{i,j,k} - \cdots - (-1)^s q_{1,2,\dots,s}.$$

Therefore we have

$$\chi - n_0 \chi_0 = \sum_{1 \le i < i \le s} (\chi - n_i \chi_i) - \sum_{1 \le i < j \le s} (\chi - n_{i,j} \chi_{i,j}) + \sum_{1 \le i < j \le s} (\chi - n_{i,j,k} \chi_{i,j,k}) - \dots - (-1)^s (\chi - n_{1,2,\dots,s} \chi_{1,2,\dots,s}).$$

Since $\chi = \sum_{1 \le i \le s} \chi - \sum_{1 \le i < j \le s} \chi + \sum_{1 \le i < j < k \le s} \chi - \cdots - (-1)^s \chi$, we have the desired results.

A finite group G is said to admit a partition if there is a set $\{G_1, G_2, \dots, G_s\}$ of subgroups of G ($s \ge 2$) such that

$$G = igcup_{i=1}^s G_i, \qquad G_i \cap G_j = \langle e \rangle \ (i \! \pm \! j).$$

Corollary 1. Let X be a compact Hausdorff space on which a finite group G acts, and assume that G admits a partition $\{G_1, G_2, \dots, G_s\}$. Then we have

$$(s-1)\chi(X) + |G|\chi(X/G) = \sum_{i=1}^{s} |G_i|\chi(X/G).$$

Proof. Since $G_i \cap G_j = \langle e \rangle$ $(i \neq j)$, if $\sharp \{i, j, \dots, k\} \geq 2$, we have $\chi_{i,j,\dots,k} = \chi(X/G)$, $n_{i,j,\dots,k} = 1$, with the notation of Theorem 1. Therefore the theorem implies

$$|G|\chi(X/G) = \sum_{i=1}^{s} |G_i|\chi(X/G_i) - \left(\sum_{i=2}^{s} (-1)^i {s \choose i}\right)\chi(X)$$

or $|G|\chi(X/G) = \sum_{i=1}^{s} |G_i|\chi(X/G_i) + (1-s)\chi(X)$. This completes the proof.

As applications of Corollary 1 we shall consider the dihedral group and the affine transformation group on a finite field. Let D_n be the dihedral group. D_n is a group admitting a partition. In fact, let $R \in D_n$ generate the cyclic subgroup $\langle R \rangle$ of order n and let v be an element of order two not in $\langle R \rangle$. Then $\{\langle R \rangle, \langle v \rangle, \langle Rv \rangle, \cdots, \langle R^{n-1}v \rangle\}$ is a partition of D_n .

Application 1. Let X be a compact Hausdorff space on which D_n acts. Then we have

$$\chi(X) + 2\chi(X/D_n) = \chi(X/\langle R \rangle) + \chi(X/\langle v \rangle) + \chi(X/\langle Rv \rangle).$$

Proof. By Corollary 1 we have

$$n\chi(X) + 2n\chi(X/D_n) = n\chi(X/\langle R \rangle) + 2\sum_{i=0}^{n-1} \chi(X/\langle R^i v \rangle).$$

If n is odd, then all subgroups $\langle R^i v \rangle$ are conjugate, and hence

$$\chi(X/\langle R^i v \rangle) = \chi(X/\langle v \rangle)$$
 for $i=1,2,\dots,n-1$.

If *n* is even, then $\langle R^i v \rangle$ and $\langle R^j v \rangle$ are conjugate if and only if $i \equiv j \mod 2$. Thus we have

$$\sum_{i=0}^{n-1} \chi(X/\langle R^i v \rangle) = \begin{cases} n \chi(X/\langle v \rangle) & \text{for odd } n \\ \frac{n}{2} (\chi(X/\langle v \rangle) + \chi(X/\langle R v \rangle)) & \text{for even } n. \end{cases}$$

Therefore we have the desired result.

Let F(q) be a finite field of characteristic q. Denote by $f_{(a,b)}$ the correspondence $F(q) \ni x \to ax + b \in F(q)$ $(a,b \in F(q), a \neq 0)$. Put $K = \{f_{(a,b)} \mid a, b \in F(q), a \neq 0\}$, $N = \{f_{(1,b)} \mid b \in F(q)\}$ and $K_0 = \{f_{(a,0)} \mid 0 \neq a \in F(q)\}$. Note that the affine transformation group K on F(q) is a group admitting a partition.

Then we have the following application by the method similar to the proof of Application 1.

Application 2. Let X be a compact Hausdorff space on which K acts. Then we have

$$\chi(X) + (q-1)\chi(X/K) = \chi(X/N) + (q-1)\chi(X/K_0).$$

Remark 1. If (X,A) is a topological G-space pair where X is a compact Hausdorff space, A is a closed subspace of X and G is a finite group, we have the isomorphism $p^*: H^n(X/G, A/G) \to H^n(X, A)^G$, where $p: (X,A) \to (X/G,A/G)$ is the projection, by Lemma 1. Thus all results in this section hold also in relative case.

§ 2. Let M be a 4k-dimensional closed oriented connected general-

ized manifold over R [3],[7], and let G be a finite group acting on M effectively by orientation preserving homeomorphisms. The cup product defines a non-degenerate symmetric bilinear form on $H^{2k}(M;R)$. Let H^+ (resp. H^-) be the maximal subspace on which this form is positive (resp. negative) definite. Then we have $H^{2k}(M;R) = H^+ \oplus H^-$ and $g^*(H^+) = H^+$, $g^*(H^-) = H^-$ ($g \in G$). The signature of M is defined to be $\sigma(M) = \dim H^+ - \dim H^-$. And for any element $g \in G$, the Atiyah-Singer signature $\sigma(g)$ is defined by $\sigma(g) = \operatorname{trace}(g^*|H^+) - \operatorname{trace}(g^*|H^-)$. We note that $\sigma(M) = \sigma(e)$ for the unit element e of G.

It is known that M/G is a 4k-dimensional orientable generalized manifold over R [7]. Therefore we can define as usual the signature $\sigma(M/G)$ of M/G, where we fix the orientation of M/G so that the projection $p: M \rightarrow M/G$ is the orientation preserving map.

Then by the method similar to the proof of Lemma 2, we get

$$|G| \sigma(M/G) = \sum_{g \in G} \sigma(g)$$
 (see [4]).

Thus we have the following theorem concerning to the signature. The proof is similar to the proof of Theorem 1.

Theorem 2. Let M be a 4k-dimensional closed oriented connected generalized manifold over R, and let G be a finite group acting on M effectively by orientation preserving homeomorphisms. Let G_1 , G_2 , \cdots , G_s be subgroups of G such that $G = \bigcup_{k=1}^s G_k$. For indices $1 \le i < j < \cdots < k \le s$, put $\sigma_{i,j,\dots,k} = \sigma(M/(G_i \cap G_j \cap \cdots \cap G_k), \ n_{i,j,\dots,k} = |G_i \cap G_j \cap \cdots \cap G_k|$. Put also $\sigma_0 = \sigma(M/G), \ n_0 = |G|$. Then it holds

$$n_0\sigma_0=\sum\limits_{1\leq i\leq s}n_i\sigma_i-\sum\limits_{1\leq i< j\leq s}n_{i,j}\sigma_{i,j}+\sum\limits_{1\leq i< j< k\leq s}n_{i,j,k}\sigma_{i,j,k} \ -\cdots -(-1)^s n_{1,2,\dots,s}\sigma_{1,2,\dots,s}.$$

Remark 2. We remark that the results similar to Corollary 1 and Applications 1, 2 hold in the case of the signature.

References

- [1] R. D. M. Accola: Riemann surfaces with automorphism groups admitting partitions. Proc. Amer. Math. Soc., 21, 477-482 (1969).
- [2] —: Two theorems on Riemann surfaces with noncyclic automorphism groups. Proc. Amer. Math. Soc., 25, 598-602 (1970).
- [3] A. Borel et al.: Seminar on transformation groups. Ann. of Math. Studies, 46 (1960).
- [4] F. Hirzebruch: The signature theorem: reminiscences and recreation. Prospects in mathematics. Ann. of Math. Studies, 70, 3-31 (1971).
- [5] —: Topological Methods in Algebraic Geometry (third enlarged edition). Springer-Verlag, Berlin Heidelberg New York (1966).
- [6] H.-T. Ku and M.-C. Ku: A note on the index of a G-manifold. Proc. Amer. Math. Soc., 22, 600-602 (1969).
- [7] F. Raymond: The orbit spaces of totally disconnected groups of transformations on manifolds. Proc. Amer. Math. Soc., 12, 1-7 (1961).