21. On the Boundedness of a Class of Operator-valued Pseudo-differential Operators in L^{p} Space

By Tosinobu Muramatu
Research Institute for Mathematical Sciences, Kyoto University
(Comm. by Kôsaku Yosida, m. J. A., Feb. 12, 1973)

Introduction. In this paper we present a class of pseudodifferential operators which are continuous in $L^{p}\left(\boldsymbol{R}^{n}\right), 1<p<\infty$. They will play an important role in studying the complex interpolation spaces of Sobolev spaces (see [3]).

Our main tools are the operator-valued version of CalderónVaillancourt's L^{2}-boundedness theorem ([2]), the Marcinkiewicz interpolation theorem, and the real-variable technique of Calderón and Zygmund which gives the weak-type estimate.

Notations. $\mathcal{L}(X, Y)$-the space of bounded linear operators from a Banach space X to a Banach space Y. $L^{p}(E, d \mu ; X)$-the space of X-valued L^{p} functions on a measure space ($E, d \mu$)

$$
\begin{aligned}
L^{p}\left(\boldsymbol{R}^{n} ; X\right) & =L^{p}\left(\boldsymbol{R}^{n}, d x ; X\right), \quad L^{p}(E, d \mu)=L^{p}(E, d \mu ; C) . \\
x & =\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}, \quad \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \alpha_{j} \quad \text { are integers }, \\
x^{\alpha} & =x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \quad|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \\
|x|^{2} & =x_{1}^{2}+\cdots+x_{n}^{2}, \quad D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}, \quad D_{j}=\partial / \partial x_{j} .
\end{aligned}
$$

$\mathcal{S}\left(\boldsymbol{R}^{n} ; X\right)$-the space of X-valued rapidly decreasing \mathcal{C}^{∞} functions. $m(S)$-measure of the set $S \subset \boldsymbol{R}^{n} . \quad a_{n}=m\{x| | x \mid \leqq 1\}$.

Definition. Let X, Y be two Banach spaces. Then an $\mathcal{L}(X, Y)$ valued infinitely differentiable function $p(x, \xi, y)$ of $(x, \xi, y) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ $\times \boldsymbol{R}^{n}$ belongs to $S_{\rho, \delta, \varepsilon}^{\mu}\left(\boldsymbol{R}^{3 n}, X ; Y\right)$ if

$$
\begin{align*}
& \left\|D_{x}^{\alpha} D_{\xi}^{\beta} p(x, \xi, y)\right\|_{\mathcal{L}_{(X, Y)}} \leqq C(1+|\xi|)^{\mu+\delta|\alpha|-\rho|\beta|}, \tag{1}\\
& \left\|D_{y}^{r} D_{\xi}^{\beta} p(x, \xi, y)\right\| \mathcal{L}_{(X, Y)} \leqq C(1+|\xi|)^{\mu+\varepsilon|\gamma|-\rho|\beta|}, \tag{2}
\end{align*}
$$

for any multi-index α, β, γ, where $0 \leqq \rho, \delta, \varepsilon \leqq 1$.
For any p of this kind with $\varepsilon<1$ and for any $f \in \mathcal{S}\left(\boldsymbol{R}^{n} ; X\right)$ the integral

$$
\begin{aligned}
T f(x) & =\frac{1}{(2 \pi)^{n}} \int e^{i x \xi} d \xi \int p(x, \xi, y) f(y) e^{-i \xi y} d y \\
& =\frac{1}{(2 \pi)^{n}} \int\left(1+|\xi|^{2}\right)^{-m}\left(1-\Delta_{y}\right)^{m}\{p(x, \xi, y) f(y)\} e^{i \xi(x-y)} d \xi d y
\end{aligned}
$$

is well defined and $T f$ belongs to $\mathcal{S}\left(\boldsymbol{R}^{n} ; Y\right)$, where m is a positive integer such that $2 m(1-\varepsilon)>\mu+n$, and Δ_{y} the Laplacian operator.

Theorem 1. Let X, Y be two Hilbert spaces,

$$
p(x, \xi, y) \in S_{\rho, \delta, \varepsilon}^{\mu}\left(R^{3 n}, X ; Y\right), \quad 0 \leqq \delta, \varepsilon<1,0 \leqq \rho \leqq 1
$$

and let $-2 \mu \geqq n\{\max (\delta, \rho)+\max (\varepsilon, \rho)\}-2 n \rho$. Then

$$
\|T f\|_{L^{2}\left(\boldsymbol{R}^{n} ; Y\right)} \leqq C\|p\| \cdot\|f\|_{L^{2}\left(R^{n} ; X\right)}
$$

where C depends only on $\delta, \varepsilon, \rho, n$. Here $\|p\|$ denotes the least value of C for which (1) and (2) hold for $|\alpha| \leqq 2 m_{1},|\beta| \leqq 2 m,|\gamma| \leqq 2 m_{2}$, where m, m_{1}, m_{2} are the least integers such that $2 m \geqq n+2, m_{1}\left(1-\delta^{\prime}\right)>5 n / 4$, $m_{2}\left(1-\varepsilon^{\prime}\right)>5 n / 4, \rho^{\prime}=\min (\rho, \max (\delta, \varepsilon)), \delta^{\prime}=\max \left(\delta, \rho^{\prime}\right), \varepsilon^{\prime}=\max \left(\varepsilon, \rho^{\prime}\right)$.

Proof. Noting that p belongs to $S_{\rho^{\prime}, \delta^{\prime}, e^{\prime}}^{\mu}$, the theorem can be proved in the same way as Calderón-Vaillancourt [2], in which we shall need the following lemma:

Lemma 1. Let X, Y be Hilbert spaces, and let $T(\sigma)$ be a strongly measurable, uniformly bounded $\mathcal{L}(X, Y)$-valued function on a measure space ($E, d \sigma$) such that

$$
\begin{aligned}
& \left\|T\left(\sigma_{1}\right)^{*} T\left(\sigma_{2}\right)\right\|_{\mathcal{L}_{(X, X}} \leqq h_{1}\left(\sigma_{1}, \sigma_{2}\right)^{2} \\
& \left\|T\left(\sigma_{1}\right) T\left(\sigma_{2}\right)^{*}\right\|_{\mathcal{L}_{(Y, Y)}} \leqq h_{2}\left(\sigma_{1}, \sigma_{2}\right)^{2}
\end{aligned}
$$

and

$$
h\left(\sigma_{1}, \sigma_{2}\right)=\int h_{1}\left(\sigma_{1}, \sigma\right) h_{2}\left(\sigma, \sigma_{2}\right) d \sigma
$$

is the kernel of a bounded operator on $L^{2}(E, d \sigma)$ with norm N^{2}, then

$$
\left\|\int_{F} T(\sigma) d \sigma\right\|_{\mathcal{L}_{(X, Y)}} \leqq N
$$

where F is any subset of finite measure of E.
Proof. See Calderón-Vaillancourt [1].
Theorem 2 (Marcinkiewicz). Let X, Y be Banach spaces, $1<q$ $\leqq \infty$, and let T be a sub-additive mapping from $L^{1}\left(\boldsymbol{R}^{n} ; X\right)+L^{q}\left(\boldsymbol{R}^{n} ; X\right)$ into the space of Y-valued strongly measurable functions on \boldsymbol{R}^{n}. Assume that for all $\lambda>0$

$$
\begin{aligned}
& m\left\{x \mid\|T f(x)\|_{Y}>\lambda\right\} \leqq C_{1} \lambda^{-1}\|f\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)}, \\
& m\left\{x \mid\|T f(x)\|_{Y}>\lambda\right\} \leqq\left\{C_{2} \lambda^{-1}\|f\|_{L^{(}\left(\boldsymbol{R}^{n} ; X\right)}\right\}^{q}
\end{aligned}
$$

(when $q=\infty$ we assume that $\|T f\|_{L^{\infty}\left(\boldsymbol{R}^{n} ; Y\right)} \leqq C_{2}\|f\|_{L^{\infty}\left(\boldsymbol{R}^{n} ; X\right)}$). Then for all $1<p<q$ we have

$$
\|T f\|_{L^{p}\left(\boldsymbol{R}^{n} ; Y\right)} \leqq C_{p}\|f\|_{L^{p}\left(\boldsymbol{R}^{n} ; X\right)}
$$

where C_{p} depends only on C_{1}, C_{2}, p and q.
For the proof of the theorem see, for example, E. M. Stein [5] p. 21.

Theorem 3. Let X, Y be Hilbert spaces, $1<p<\infty$, and let $K(x, z, y)$ be an $\mathcal{L}(X, Y)$-valued function which satisfies the following properties:
(I) $K \in \mathcal{C}^{\infty}\left(\boldsymbol{R}^{n} \times\left(\boldsymbol{R}^{n}-\{0\}\right) \times \boldsymbol{R}^{n} ; \mathcal{L}(X, Y)\right)$,
(II) There exists $p(x, \xi, y)$ such that for $f \in \mathcal{S}\left(\boldsymbol{R}^{n} ; X\right)$, $g \in \mathcal{S}\left(\boldsymbol{R}^{n} ; Y\right)$
$\int K(x, x-y, y) f(y) d y=(2 \pi)^{-n} \iint p(x, \xi, y) f(y) e^{i(x-y) \varepsilon} d y d \xi, \int K(x, x-y, y)^{*}$ $g(x) d x=(2 \pi)^{-n} \iint p(x, \xi, y)^{*} g(x) e^{i(x-y) \xi} d x d \xi$;
(III) Its Fourier transform $p(x, \xi, y)$ with respect to z belongs to $S_{\rho, \delta, \varepsilon}^{\mu}\left(\boldsymbol{R}^{3 n} ; \mathcal{L}(X, Y)\right), p(x, \xi, y)^{*}$ belongs to $S_{\rho^{*}, \sigma^{*}, c^{*}}^{\mu^{*}}\left(\boldsymbol{R}^{3 n} ; \mathcal{L}(Y, X)\right)$, and ($\mu, \rho, \delta, \varepsilon),\left(\mu^{*}, \rho^{*}, \delta^{*}, \varepsilon^{*}\right)$ satisfy the conditions stated in Theorem 1 ;
(IV) For any $|\beta|+|\gamma|=1,|\alpha|+|\gamma|=1$,

$$
\begin{aligned}
& \left\||z|^{n+1} D_{y}^{\beta} D_{z}^{r} K(x, z, y)\right\|_{\mathcal{L}_{(X, Y)} \leqq C_{\beta \gamma}<\infty}<\infty, \\
& \left\|\left.z\right|^{n+1} D_{x}^{\alpha} D_{z}^{\gamma} K(x, z, y)^{*}\right\| \mathcal{L}_{(Y, X)} \leqq C_{\alpha \gamma}<\infty .
\end{aligned}
$$

Then for all $f \in L^{p}\left(\boldsymbol{R}^{n} ; X\right)$

$$
\begin{equation*}
T f(x)=\int K(x, x-y, y) f(y) d y \tag{3}
\end{equation*}
$$

is convergent in $L^{p}\left(\boldsymbol{R}^{n} ; Y\right)$ and

$$
\begin{equation*}
\|T f\|_{L^{p}\left(R^{n} ; Y\right)} \leqq C_{p}\|f\|_{L^{p}\left(R^{n} ; X\right)} \tag{4}
\end{equation*}
$$

Proof. (i) By Theorem 1 we obtain the conclusion for the case $p=2$.
(ii) We shall prove that for $f \in L^{1}\left(\boldsymbol{R}^{n}: X\right)$
(5)

$$
m\left\{x \mid\|T f(x)\|_{Y}>\lambda\right\} \leqq C_{1} \lambda^{-1}\|f\|_{L^{1}\left(R^{n} ; X\right)},
$$

where C_{1} depends only on $n, C_{2}, C_{\beta_{r}},(|\beta|+|\gamma|=1)$.
From Calderón-Zygumund's theorem it follows that (cf. E. M. Stein [5]) for $f \in L^{1}\left(\boldsymbol{R}^{n} ; X\right), \lambda>0$, there exists a decomposition of \boldsymbol{R}^{n} so that $\boldsymbol{R}^{n}=F \cup \Omega, F \cap \Omega=\emptyset,\|f(x)\|_{X} \leqq \lambda$ almost everywhere on F, Ω is the union of cubes $\Omega=\cup_{k} Q_{k}$, whose interiors are disjoint, and so that for each Q_{k}

$$
\lambda m\left(Q_{k}\right) \leqq\|f\|_{L^{1}\left(Q_{k} ; X\right)} \leqq 2^{n} \lambda m\left(Q_{k}\right) .
$$

Let

$$
f_{0}(x)= \begin{cases}f(x) & \text { for } x \in F \\ \frac{1}{m\left(Q_{j}\right)} \int_{Q_{j}} f(y) d y & \text { for } x \in Q_{j}^{0}\end{cases}
$$

($Q_{j}^{0}=$ the interior of Q_{j}), and let $g(x)=f(x)-f_{0}(x)$.
Then from the inequality

$$
\left\|f_{0}(x)\right\|_{L^{2}\left(\boldsymbol{R}^{n} ; X\right)}^{2} \leqq \lambda\left(1+2^{2 n}\right)\|f\|_{L^{1}\left(R^{n} ; X\right)}
$$

we obtain

$$
\begin{equation*}
m\left\{x \mid\left\|T f_{0}(x)\right\|_{Y}>\lambda\right\} \leqq C_{2}\left(1+2^{2 n}\right) \lambda^{-1}\|f\|_{L^{1}\left(R^{n} ; X\right)} \tag{6}
\end{equation*}
$$

Let x^{k} be the center of $Q_{k}, 2 b_{k}$ the length of the side of Q_{k}, r_{k} $=\sqrt{n} b_{k}$, and let us write $B_{k}=\left\{x| | x-x^{k} \mid \leqq 2 r_{k}\right\}, D^{\prime}=\cup_{k} B_{k}, D=\boldsymbol{R}^{n} \backslash D^{\prime}$,

$$
g_{k}(x)= \begin{cases}g(x) & \text { for } x \in Q_{k}^{0} \\ 0 & \text { otherwise }\end{cases}
$$

Since the integral of g_{k} is equal to zero, it follows that

$$
\begin{aligned}
T g_{k}(x) & =\int K(x, x-y, y) g_{k}(y) d y \\
& =\int\left\{K(x, x-y, y)-K\left(x, x-x^{k}, x^{k}\right)\right\} g_{k}(y) d y
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& K(x, x-y, y)-K\left(x, x-x^{k}, x^{k}\right) \\
& \quad=\int_{0}^{1}\left\{\operatorname{grad}_{z} K(x, x-y(t), y(t))-\operatorname{grad}_{y} K(x, x-y(t), y(t))\right\}\left(x^{k}-y\right) d t,
\end{aligned}
$$

where $y(t)=y+t\left(x^{k}-y\right)$, so that

$$
\left\|K(x, x-y, y)-K\left(x, x-x^{k}, x^{k}\right)\right\|_{\mathcal{L}_{(X, Y)}} \leqq C^{\prime} r_{k}\left|x-x^{k}\right|^{-n-1}
$$

for $x \& B_{k}, y \in Q_{k}$, since $\left|x^{k}-y\right|,\left|x^{k}-y(t)\right| \leqq r_{k}$ and

$$
|x-y(t)| \geqq\left|x-x^{k}\right|-\left|x^{k}-y(t)\right| \geqq\left|x-x^{k}\right|-r_{k} \geqq \frac{1}{2}\left(x-x^{k}\right) .
$$

Thus we have

$$
\begin{aligned}
\int_{D}\left\|T g_{k}(x)\right\|_{Y} d x & \leqq C^{\prime} \sqrt{n} b_{k} \int_{D}\left|x-x^{k}\right|^{-n-1} d x\left\|g_{k}\right\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)} \\
& \leqq C^{\prime} n a_{n}\left\|g_{k}\right\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{D}\|T g(x)\|_{Y} d x & \leqq C^{\prime \prime} \int_{j=1}^{\infty}\left\|g_{j}(x)\right\|_{X} d x=C^{\prime \prime} \int\|g(x)\|_{X} d x \\
& \leqq C^{\prime \prime \prime}\left\{\|f\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)}+2^{n} \lambda m(\Omega)\right\} \leqq C^{\prime \prime}\left(1+2^{n}\right)\|f\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)}
\end{aligned}
$$

and from this it follows that

$$
m\left(D \cap\left\{x \mid\|T g(x)\|_{Y}>\lambda\right\}\right) \leqq C^{\prime \prime} \lambda^{-1}\|f\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)} .
$$

Since $m\left(D^{\prime}\right) \leqq a_{n} n^{n / 2} m(\Omega)$, it follows that $m\left\{x \mid\|T g(x)\|_{Y}>\lambda\right\} \leqq$ $C_{1} \lambda^{-1}\|f\|_{L^{1}\left(\boldsymbol{R}^{n} ; X\right)}$, which, combining with the inequality (6), gives the estimate (5), since

$$
m\left\{x \left|\left|\mid T f(x) \|_{Y}>2 \lambda\right\} \leqq m\left\{x \mid\left\|T f_{0}(x)\right\|_{Y}>\lambda\right\}+m\left\{x \mid\|T g(x)\|_{Y}>\lambda\right\} .\right.\right.
$$

(iii) Case $1<p<2 . T$ is well defined for $L^{1}\left(\boldsymbol{R}^{n} ; X\right)+L^{2}\left(\boldsymbol{R}^{n} ; X\right)$ and also linear. By the result (i), (ii) and Theorem 2 we obtain the conclusion for the case.
(iv) Case $2<p<\infty$. Let p^{\prime} denote the conjugate exponent of p. From Fubini's theorem it follows that for $f \in \mathcal{S}\left(\boldsymbol{R}^{n} ; X\right), g \in \mathcal{S}\left(\boldsymbol{R}^{n} ; Y\right)$

$$
\begin{aligned}
\int(T f(x), g(x))_{Y} d x & =\int d y\left(f(y), \int K(x, x-y, y)^{*} g(x) d x\right)_{X} \\
& =\int\left(f(y), T^{*} g(y)\right)_{X} d y
\end{aligned}
$$

where T^{*} is the operator with the kernel $K(y,-z, x)^{*}$.
But the theorem is valid for $1<p^{\prime}<2$. Consequently

$$
\begin{aligned}
\left|\int(T f(x), g(x))_{Y} d x\right| & \leqq\|f\|_{L^{p}\left(\boldsymbol{R}^{n} ; X\right)}\left\|T^{*} g\right\|_{L^{p^{\prime}}\left(\boldsymbol{R}^{n} ; X\right)} \\
& \leqq C_{p^{\prime}}^{*}\|f\|_{L^{p}\left(\boldsymbol{R}^{n} ; X\right)}\|g\|_{L^{p^{\prime}}\left(\boldsymbol{R}^{n} ; Y\right)}
\end{aligned}
$$

This gives (4) in view of the duality between $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$ and $L^{p^{\prime}}\left(\boldsymbol{R}^{n} ; X\right)$, (see Phillips [4]). Since $\mathcal{S}\left(\boldsymbol{R}^{n} ; X\right)$ is dense in $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$, this completes the proof of the theorem.

Corollary. Let X be a Hilbert space and let $K(t, x, z, y)$ be a $\mathscr{B}^{\infty}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}\right)$-valued continuous function of $t \in I=\{t \mid 0 \leqq t \leqq a\}$. Assume that K has compact support $\{z||z| \leqq b\}$ in z, and that

$$
\begin{equation*}
\int K(t, x, z, y) d z=0 \tag{7}
\end{equation*}
$$

Then for any $1<p<\infty$ and
(I) for $f \in L^{p}\left(\boldsymbol{R}^{n} ; X\right)$ the integral

$$
\int_{0}^{a} t^{-n-1} d t \int K(t, x,(x-y) / t, y) f(y) d y
$$

is convergent in $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$ and defines a bounded linear operator from $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$ into $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$.
(II) For $f \in L^{p}\left(\boldsymbol{R}^{n} ; X\right)$ the integral

$$
t^{-n} \int K(t, x,(x-y) / t, y) f(y) d y
$$

defines a bounded linear operator from

$$
L^{p}\left(\boldsymbol{R}^{n} ; X\right) \quad \text { into } \quad L^{p}\left(\boldsymbol{R}^{n} ; L^{2}\left(I, t^{-1} d t ; X\right)\right)
$$

(III) For $u(t, x) \in L^{p}\left(\boldsymbol{R}^{n} ; L^{2}\left(I, t^{-1} d t ; X\right)\right)$ the integral

$$
\int_{0}^{a} t^{-n-1} d t \int K(t, x,(x-y) / t, y) u(t, y) d y
$$

is convergent in $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$ and defines a bounded linear operator from $L^{p}\left(\boldsymbol{R}^{n} ; L^{2}\left(I, t^{-1} d t\right) ; X\right)$ into $L^{p}\left(\boldsymbol{R}^{n} ; X\right)$.

Proof. Setting

$$
p(t, x, \xi, y)=\int K(t, x, z, y) e^{-i z \xi} d z
$$

we first observe that for any $f \in \mathcal{S}\left(\boldsymbol{R}^{n} ; X\right)$,

$$
t^{-n} \int K(t, x,(x-y) / t, y) f(y) d y=\frac{1}{(2 \pi)^{n}} \iint p(t, x, t \xi, y) f(y) e^{i \xi(x-y)} d y d \xi
$$

Next we observe that

$$
\text { (} 8 \text {) }
$$

$$
\left\|D_{x}^{\alpha} D_{\xi}^{\beta} p(t, x, t \xi, y)\right\|_{L^{q(I, t-1 d t)}} \leqq C_{\alpha \beta q}(1+|\xi|)^{-|\beta|}
$$

for any $1 \leqq q \leqq \infty, \alpha, \beta$. In fact, from the inequality

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(t, x, \xi, y)\right| \leqq C_{\alpha \beta}=\sup _{t, x, y, z}\left|K_{\beta}^{(\alpha)}(t, x, z, y)\right| a_{n} b^{n}
$$

where $K_{\beta}^{(\alpha)}(t, x, z, y)=(-i z)^{\beta} D_{x}^{\alpha} K(t, x, z, y)$, and the inequality

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(t, x, \xi, y)\right|
$$

$$
\begin{equation*}
=2^{-k}\left|\int \sum_{j=0}^{k}(-1)^{j}\left({ }_{j}^{k}\right) K_{\beta}^{(\alpha)}\left(t, x, z+\frac{j \xi \pi}{|\xi|^{2}}, y\right) e^{-i z \xi} d z\right| \leqq C_{\alpha \beta k}|\xi|^{-k}, \tag{9}
\end{equation*}
$$

where

$$
C_{\alpha \beta k}=a_{n}(b+k \pi)^{n} 2^{-k} \sup _{|r|=k} \sup _{t, x, z, y}\left|D_{z}^{\tau} K_{\beta}^{(\alpha)}(t, x, z, y)\right|,
$$

it follows

$$
\left\|D_{x}^{\alpha} D_{\xi}^{\beta} p(t, x, t \xi, y)\right\|_{\left.L^{q(I, t-1} d t\right)} \leqq C_{\alpha \beta}\left(\int_{0}^{a} t^{q|\beta|-1} d t\right)^{1 / q}=C_{\alpha \beta q} a^{|\beta|},
$$

for $|\xi| \leqq 1,|\beta| \geqq 1$. And for $|\xi| \geqq 1,|\beta| \geqq 1$ we have, taking $k>|\beta|$,

$$
\left\|D_{x}^{\alpha} D_{\xi}^{\beta} p(t, x, t \xi, y)\right\|_{I q(I, t-1 a t)}^{q}
$$

$$
\leqq C_{\alpha \beta}^{q} \int_{0}^{1 /|\xi|} t^{q|\beta|-1} d t+C_{\alpha \beta k}^{q}|\xi|^{-k q} \int_{1 /|\xi|}^{\infty} t^{q|\beta|-k q-1} d t=C_{\alpha \beta}^{\prime q}|\xi|^{-|\beta| q} .
$$

Also from (9) and the inequality

$$
\left|D_{x}^{\alpha} p(t, x, \xi, y)\right| \leqq\left|\int D_{x}^{\alpha} K(t, x, z, y)\left(e^{-i \xi z}-1\right) d z\right| \leqq C_{\alpha}|\xi|
$$

where $C_{\alpha}=a_{n} b^{n+1} \sup _{t, x, y, z}\left|D_{x}^{\alpha} K(t, x, z, y)\right|$, it follows that

$$
\begin{aligned}
& \left\|D_{x}^{\alpha} p(t, x, t \xi, y)\right\|_{L q(I, t-1 a t)}^{q} \\
& \quad \leqq C_{\alpha}^{q} \int_{0}^{1 /|\xi|}|\xi|^{q} t^{q-1} d t+C_{\alpha 01}^{q} \int_{1 /|\xi|}^{\infty}|\xi|^{-q} t^{-q-1} d t=C_{\alpha q}^{q} .
\end{aligned}
$$

And hence (8) is proved. Similarly, we obtain

$$
\begin{equation*}
\left\|D_{y}^{\alpha} D_{\xi}^{\beta} p(t, x, t \xi, y)\right\|_{L^{q}(I, t-1 d t)} \leqq C_{\alpha \beta q}(1+|\xi|)^{-|\beta|} . \tag{10}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
& \left.\left\|t^{-n}|z|^{n+1} D_{x}^{\alpha} D_{y}^{\beta} K(t, x, z / t, y)\right\|_{L_{q(I, t-1}} K t\right) \\
& \quad \leqq C_{\alpha \beta}^{\prime}\left\{\int_{|z| / b}^{\infty} t^{-n q-1} d t\right\}^{1 / q}|z|^{n+1}=C_{\alpha \beta q}^{\prime}|z| b^{n} \leqq C_{\alpha \beta q}^{\prime} b^{n+1} s,
\end{aligned}
$$

for $|z| \leqq b s$, and for $|\alpha|=1$,

$$
\begin{aligned}
& \left.\left\|t^{-n}|z|^{n+1} D_{z}^{\alpha} K(t, x, z / t, y)\right\|_{L^{q}(I, t-1}(t)\right) \\
& \quad \leqq C_{\alpha}\left\{\int_{|z| / b}^{\infty} t^{-n q-q-1} d t\right\}^{1 / q}|z|^{n+1}=C_{\alpha q} b^{n+1} .
\end{aligned}
$$

Now in order to apply the theorem to the operators in the corollary there only remains to observe that for the operators given by

$$
\begin{array}{ll}
T_{1} \zeta=\int_{0}^{a} \varphi(t) \zeta t^{-1} d t & \text { for } \zeta \in X \\
T_{2} \zeta=\varphi(t) \zeta & \text { for } \zeta \in X \\
T_{3} f=\int_{0}^{a} \varphi(t) f(t) t^{-1} d t & \text { for } f \in L^{2}\left(I, t^{-1} d t ; X\right)
\end{array}
$$

where φ is a measurable function, their norms are majorized as

$$
\begin{aligned}
& \left\|T_{1}\right\|_{\mathcal{L}_{(X, X)}} \leqq\|\varphi\|_{L^{1}(I, t-1 a t)}, \\
& \left\|T_{2}\right\|_{\mathcal{L}_{\left(X ; L^{2}(I, t-1 d t ; X)\right)}=\left\|T_{3}\right\| \mathcal{L}_{\left(L^{2}(I, t-1 d t ; X), X\right)}=\|\varphi\|_{L^{2}(I, t-1 a t)} .} .
\end{aligned}
$$

This completes the proof of the corollary.

References

[1] Calderón, A. P., and Vaillancourt, R.: On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23, 374-378 (1971).
[2] -: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. U. S. A., 69, 1185-1187 (1972).
[3] Muramatu, T.: On Besov spaces and Sobolev spaces of generalized functions defined on a general region (to appear).
[4] Phillips, R. S.: On weakly compact subsets of a Banach space. Amer. J. Math., 65, 108-136 (1943).
[5] Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton Univ. Press (1970).

