37. On the Logarithm of Closed Linear Operators

By Atsushi Yoshikawa*)
Department of Mathematics, Hokkaido University
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1973)

For a non-negative operator A in a Banach space X, Nollau [3] gave a definition of its $\operatorname{logarithm} \log A$. In this note, we present another definition of $\log A$. Formally our definition is based on the relation

$$
\log A=\log A(\mu+A)^{-1}-\log (\mu+A)^{-1}, \quad \mu>0
$$

It is important here that $\log (\mu+A)^{-1}\left(\right.$ resp. $\left.\log A(\mu+A)^{-1}\right)$ is to be defined as the infinitesimal generator of a holomorphic semi-group $(\mu+A)^{-\alpha}, \alpha \geqq 0,\left(\operatorname{resp} . A^{a}(\mu+A)^{-\alpha}\right)$ under suitable conditions on A. Using this relation, we derive several formal properties of $\log A$, of which some seem to be new. By means of these properties, we finally give another proof of one of Nollau's representation formulas for $\log A$. The original proof was done through Dunford's integral and Nollau relied on this formula for the derivation of formal properties of $\log A$.

1. Definition and formal properties. We only consider a densely ranged and densely defined non-negative operator A in a Banach space X. Namely, all positive reals are contained in the resolvent set $\mathbf{P}(-A)$ of $-A$;

$$
\begin{align*}
\left\|r(r+A)^{-1}\right\| & \leqq M, \quad r>0 ; \tag{1.1}\\
\overline{D(A)} & =X \tag{1.2}\\
\overline{R(A)} & =X
\end{align*}
$$

Here $D(T), R(T)$ stand for the domain and the range of an operator T, respectively. \bar{Y} is the closure of the set Y in X.

For A with (1.1), (1.2), (1.3), the following assertion is well-known (Komatsu [1, 2], cf. Yosida [4]).

Proposition 1.1. For any positive $\mu,\left\{(\mu+A)^{-\alpha} ; \alpha \geqq 0\right\},\left\{A^{\alpha}(\mu+A)^{-\alpha}\right.$; $\alpha \geqq 0\}$ are strongly continuous semi-groups of bounded linear operators. Both semi-groups are analytically continued to the half plane $\operatorname{Re} \alpha>0$.

We also note the following relation (cf. Komatsu [2]) :

$$
\begin{equation*}
A^{\alpha}(\mu+A)^{-\alpha}=\mu^{-\alpha}\left(A^{-1}+\mu^{-1}\right)^{-\alpha} \tag{1.4}
\end{equation*}
$$

We denote by $\Lambda^{+}(\mu ; A)\left(\right.$ resp. $\left.\Lambda^{-}(\mu ; A)\right)$ the infinitesimal generator of $(\mu+A)^{-\alpha}\left(\operatorname{resp} . A^{\alpha}(\mu+A)^{-\alpha}\right)$. We set $D^{ \pm}(\mu ; A)=D\left(\Lambda^{ \pm}(\mu ; A)\right)$. We sometimes write $\Lambda^{ \pm}(\mu), D^{ \pm}(\mu)$ instcad of $\Lambda^{ \pm}(\mu ; A), D^{ \pm}(\mu ; A)$.

[^0]Proposition 1.2. $D^{+}(\mu)$ and $D^{-}(\mu)$ are independent of $\mu>0$:

$$
\begin{aligned}
& D^{+}(\mu)=D^{+}, \\
& D^{-}(\mu)=D^{-} .
\end{aligned}
$$

Proof. We first note the following elementary
Lemma 1.3. Let T_{t} be a strongly continuous group of bounded operators. If T_{t} is analytically continued in the sectors $\sum^{ \pm}=\{\tau ; \operatorname{Re} \tau \gtrless 0$, $\left.|\arg \tau|<\theta_{ \pm}\right\},\left(0<\theta_{ \pm}<\pi / 2\right)$, then its infinitesimal generator is bounded, and T_{t} is entire in t.

Proof. Under the assumption of Lemma, we see immediately that the spectrum of its infinitesimal generator B is compact. In particular,

$$
T_{t} x=(2 \pi i)^{-1} \int_{\Gamma} e^{-z t}(z-B)^{-1} x d z, \quad(x \in X)
$$

where Γ is a bounded closed curve containing the spectrum of B in its interior. This implies the lemma.

End of the proof of Proposition 1.2. If $\nu>0$, we have

$$
(\mu+A)^{-\alpha}=\left\{(\nu+A)(\mu+A)^{-1}\right\}^{\alpha}(\nu+A)^{-\alpha} .
$$

Since $\left\{(\nu+A)(\mu+A)^{-1}\right\}^{\alpha}$ is a group satisfying the hypothesis of Lemma 1.3, its infinitesimal generator $\Lambda_{\mu, \nu}$ is bounded. Thus, $x \in D^{+}(\nu)$ if and only if $x \in D^{+}(\mu)$, and

$$
\Lambda^{+}(\mu) x=\Lambda^{+}(\nu) x+\Lambda_{\mu, \nu} x, \quad x \in D^{+} .
$$

The other half of Proposition 1.2 is proved similarly.
Proposition 1.4. If $x \in D^{+}$(resp. D^{-}), then $\Lambda^{+}(\mu) x$ (resp. $\left.\Lambda^{-}(\mu) x\right)$ is strongly differentiable in μ, and

$$
\begin{equation*}
d \Lambda^{+}(\mu) x / d \mu=-(\mu+A)^{-1} x, \quad x \in D^{+} \tag{1.5}
\end{equation*}
$$

$$
\left.d \Lambda^{-}(\mu) x / d \mu=-(\mu+A)^{-1} x, \quad x \in D^{-}\right)
$$

Proof. Since

$$
\begin{equation*}
(\mu+A)^{-\alpha} x-(1+A)^{-\alpha} x=-\alpha \int_{1}^{\mu}(\nu+A)^{-\alpha-1} x d \nu \tag{1.6}
\end{equation*}
$$

we have, by differentiating in α and letting $\alpha \rightarrow 0$,

$$
\Lambda^{+}(\mu) x-\Lambda^{+}(1) x=-\int_{1}^{\mu}(\nu+A)^{-1} x d \nu, \quad x \in D^{+}
$$

Here we used that $\Lambda_{\mu, \nu}$ in the proof of Proposition 1.2 is continuous in μ or $\nu>0$. Hence, we get (1.5) after differentiation in μ. (1.6) is obtained analogously.

Corollary 1.5. The operator L with

$$
\begin{aligned}
L x & =\left\{\Lambda^{-}(\mu)-\Lambda^{+}(\mu)\right\} x, \quad x \in D(L), \\
D(L) & =D^{+} \cap D^{-},
\end{aligned}
$$

is defined independently of $\mu>0$.
Proposition 1.6. The operator L is closable.
Proof. First we note, for $x \in D^{+} \cap D^{-}$,

$$
\begin{equation*}
\left(A^{\alpha}-I\right)(\mu+A)^{-\alpha} x=\int_{0}^{\alpha} A^{\beta}(\mu+A)^{-\alpha} L x d \beta, \quad \alpha>0, \mu>0 \tag{1.7}
\end{equation*}
$$

In fact, if we set $u(\alpha)=\left(A^{\alpha}-I\right)(\mu+A)^{-\alpha} x, x \in D^{+} \cap D^{-}$, then we have

$$
\left\{\begin{array}{l}
d u(\alpha) / d \alpha=\Lambda^{+}(\mu) u(\alpha)+A^{\alpha}(\mu+A)^{-\alpha} L x, \\
u(0)=0
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
u(\alpha) & =\int_{0}^{\alpha} \exp \left((\alpha-\beta) \Lambda^{+}(\mu)\right) A^{\beta}(\mu+A)^{-\beta} L x d \beta \\
& =\int_{0}^{\alpha} A^{\beta}(\mu+A)^{-\alpha} L x d \beta .
\end{aligned}
$$

By differentiating (1.7) in μ, we obtain

$$
\begin{equation*}
\left(A^{\alpha}-I\right)(\mu+A)^{-\alpha-1} x=\int_{0}^{\alpha} A^{\beta}(\mu+A)^{-\alpha-1} L x d \beta, \quad x \in D^{+} \cap D^{-} \tag{1.8}
\end{equation*}
$$

Now let $z_{n} \in D^{+} \cap D^{-}$be such that $z_{n} \rightarrow z, L z_{n} \rightarrow y$. From (1.8), we have

$$
\begin{equation*}
\left(A^{\alpha}-I\right)(\mu+A)^{-\alpha-1} z=\int_{0}^{\alpha} A^{\beta}(\mu+A)^{-\alpha-1} y d \beta \tag{1.9}
\end{equation*}
$$

Here the right-hand side is differentiable in α, and $(\mu+A)^{-1} z \in D^{+}$. Thus the left-hand side of (1.9) is termwise differentiable in α. In particular, $(\mu+A)^{-1} z \in D^{-}$, and

$$
\Lambda^{-}(\mu)(\mu+A)^{-1} z-\Lambda^{+}(\mu)(\mu+A)^{-1} z=(\mu+A)^{-1} y
$$

or
(1.10)

$$
L(\mu+A)^{-1} z=(\mu+A)^{-1} y
$$

Hence, if $z=0$, then $y=0$.
Corollary 1.7. Let L^{\sim} be the closure of L. If $x \in D\left(L^{\sim}\right)$, then $(\mu+A)^{-1} x \in D(L)$, and

$$
L(\mu+A)^{-1} x=(\mu+A)^{-1} L^{\sim} x .
$$

Proof. This follows from (1.10).
A similar discussion shows the following
Corollary 1.8. If $x \in D\left(L^{\sim}\right)$, then $A(\mu+A)^{-1} x \in D(L)$, and

$$
L A(\mu+A)^{-1} x=A(\mu+A)^{-1} L^{\sim} x .
$$

Corollary 1.9. If A is bounded, then $D(L)=D^{-}$, and $L^{\sim}=L$. If A^{-1} is bounded, then $D(L)=D^{+}$, and $L^{\sim}=L$.

Proof. If A is bounded, then $(\mu+A)^{-\alpha}$ satisfies the conditions of Lemma 1.3. Thus, $D^{+}=X$. The other half follows similarly.

Definition 1.10. We define $\log A=L^{\sim}$.
Corollary 1.11. If $x \in D^{+} \cap D^{-}$, then

$$
\log A x=\log A(\mu+A)^{-1} x-\log (\mu+A)^{-1} x
$$

Proposition 1.12. $\log A=-\log A^{-1}$.
Proof. Using (1.4), we have

$$
\begin{aligned}
& \Lambda^{+}(\mu ; A)=-\log \mu+\Lambda^{-}\left(\mu^{-1} ; A^{-1}\right) \\
& \Lambda^{-}(\mu ; A)=-\log \mu+\Lambda^{+}\left(\mu^{-1} ; A^{-1}\right) .
\end{aligned}
$$

Proposition 1.13.

$$
\begin{align*}
& \Lambda^{+}(\mu)=\log (\mu+A)^{-1} \tag{1.11}\\
& \Lambda^{-}(\mu)=\log A(\mu+A)^{-1} \tag{1.12}
\end{align*}
$$

Proof. Put $B=(\mu+A)^{-1}$. Since

$$
\begin{aligned}
& B^{\alpha}(1+B)^{-\alpha} x-(1+B)^{-\alpha} x \\
& \quad=(\mu+A)^{\alpha}(1+\mu+A)^{-\alpha} \int_{0}^{\alpha} \Lambda^{+}(\mu ; A)(\mu+A)^{-\beta} x d \beta
\end{aligned}
$$

we have

$$
\begin{aligned}
& \Lambda^{-}(1 ; B) B^{\alpha}(1+B)^{-\alpha} x-\Lambda^{+}(1 ; B)(1+B)^{-\alpha} x \\
& \quad=\Lambda^{-}(1 ; \mu+A)(\mu+A)^{\alpha}(1+\mu+A)^{-\alpha} \int_{0}^{\alpha} \Lambda^{+}(\mu ; A)(\mu+A)^{-\beta} x d \beta \\
& \quad+(\mu+A)^{\alpha}(1+\mu+A)^{-\alpha} \Lambda^{+}(\mu ; A)(\mu+A)^{-\alpha} x .
\end{aligned}
$$

$\Lambda^{+}(1 ; B)=\Lambda^{-}(1 ; \mu+A)$ being bounded (Lemma 1.3), $x \in D\left(\Lambda^{-}(1 ; B)\right)$ if and only if $x \in D\left(\Lambda^{+}(\mu ; A)\right)$, and

$$
\Lambda^{-}(1 ; B) x-\Lambda^{+}(1 ; B) x=\Lambda^{+}(\mu ; A) x .
$$

By Corollary 1.9, we have (1.11). (1.12) is proved in a similar way.

2. Representation formula.

Proposition 2.1. If $x \in D\left(A^{\beta}\right)$ for some $\beta, 0<\beta<1$, then

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \log R(R+A)^{-1} x=0 \tag{2.1}
\end{equation*}
$$

If $x \in R\left(A^{\beta^{\prime}}\right)$ for some $\beta^{\prime}, 0<\beta^{\prime}<1$, then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow \infty} \log A(\varepsilon+A)^{-1} x=0 \tag{2.2}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
(R+A)^{-\alpha} x-R^{-\alpha} x & =-\alpha \int_{0}^{1} A(R+s A)^{-\alpha-1} x d s, \quad x \in D\left(A^{\beta}\right), \\
\Lambda^{+}(R ; A) x-\log R^{-1} x & =-\int_{0}^{1} A(R+s A)^{-1} x d s=0\left(R^{\beta-1}\right) .
\end{aligned}
$$

(2.2) is proved similarly.

Proposition 2.2. If $x \in D\left(A^{\beta}\right) \cap R\left(A^{\beta^{\prime}}\right)$ for some $\beta, \beta^{\prime}, 0<\beta, \beta^{\prime}<1$, then

$$
\begin{align*}
\log A x= & (\log \nu) x+\lim _{R \rightarrow \infty} \int_{\nu}^{R} \mu^{-1} A(\mu+A)^{-1} x d \mu \tag{2.3}\\
& -\lim _{\varepsilon \rightarrow \infty} \int_{\varepsilon}^{\nu}(\mu+A)^{-1} x d \mu
\end{align*}
$$

for every $\nu>0$.
Proof. By Proposition 1.4,

$$
d \log \mu(\mu+A)^{-1} x / d \mu=\left\{\mu^{-1}-(\mu+A)^{-1}\right\} x
$$

Thus, by Proposition 2.1,

$$
-\log \nu(\nu+A)^{-1} x=\lim _{R \rightarrow \infty} \int_{\nu}^{R} \mu^{-1} A(\mu+A)^{-1} x d \mu
$$

Similarly,

$$
\log A(\nu+A)^{-1} x=-\lim _{t \rightarrow 0} \int_{\varepsilon}^{\nu}(\mu+A)^{-1} x d \mu .
$$

Hence, Corollary 1.11 implies the proposition.
Corollary 2.3 (Nollau). If $x \in D\left(A^{\beta}\right) \cap R\left(A^{\beta^{\prime}}\right)$ for some $\beta, \beta^{\prime}, 0<\beta$, $\beta^{\prime}<1$, then

$$
\begin{equation*}
\log A x=\lim _{R \rightarrow \infty, \varepsilon \rightarrow 0} \int_{\varepsilon}^{R}(1+\mu)^{-1}(A-I)(\mu+A)^{-1} x d \mu \tag{2.4}
\end{equation*}
$$

Proof. We divide the integral in the right-hand side of (2.4):

$$
\int_{s}^{R}(1+\mu)^{-1}(A-I)(\mu+A)^{-1} x d \mu=\int_{\theta}^{\nu}+\int_{\nu}^{R}=I_{s}+I^{R}, \quad \nu>0 .
$$

Then, as easily seen,

$$
I_{6}=\{\log (\nu+1)-\log (1+\varepsilon)\} x-\int_{\theta}^{\nu}(\mu+A)^{-1} x d \mu,
$$

and

$$
I^{R}=\int_{\nu}^{R} \mu^{-1} A(\mu+A)^{-1} x d \mu-\left\{\log R(R+1)^{-1}-\log \nu+\log (\nu+1)\right\} x .
$$

Hence, (2.4) follows from (2.3).

References

[1] Komatsu, H.: Fractional powers of operators. Pacific J. Math., 19, 285346 (1966).
[2] -: Fractional powers of operators. III. Negative powers. J. Math. Soc. Japan, 21, 89-111 (1969).
[3] Nollau, V.: Über den Logarithmus abgeschlossener Operatoren in Banachschen Räumen. Acta Sci. Math., 30, 161-174 (1969).
[4] Yosida, K.: Functional Analysis. Springer, Berlin (1965).

[^0]: *) Partly supported by the Sakkokai Foundation.

