37. On the Logarithm of Closed Linear Operators

By Atsushi Yoshikawa*)

Department of Mathematics, Hokkaido University

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1973)

For a non-negative operator A in a Banach space X, Nollau [3] gave a definition of its logarithm $\log A$. In this note, we present another definition of $\log A$. Formally our definition is based on the relation

```
\log A = \log A(\mu + A)^{-1} - \log (\mu + A)^{-1}, \quad \mu > 0.
```

It is important here that $\log (\mu + A)^{-1}$ (resp. $\log A(\mu + A)^{-1}$) is to be defined as the infinitesimal generator of a holomorphic semi-group $(\mu + A)^{-\alpha}$, $\alpha \ge 0$, (resp. $A^{\alpha}(\mu + A)^{-\alpha}$) under suitable conditions on A. Using this relation, we derive several formal properties of $\log A$, of which some seem to be new. By means of these properties, we finally give another proof of one of Nollau's representation formulas for $\log A$. The original proof was done through Dunford's integral and Nollau relied on this formula for the derivation of formal properties of $\log A$.

1. Definition and formal properties. We only consider a densely ranged and densely defined non-negative operator A in a Banach space X. Namely, all positive reals are contained in the resolvent set P(-A) of -A;

- (1.1) $||r(r+A)^{-1}|| \leq M, \quad r > 0;$
- $(1.2) <math>\overline{D(A)} = X;$
- (1.3) $\overline{R(A)} = X.$

Here D(T), R(T) stand for the domain and the range of an operator T, respectively. \overline{Y} is the closure of the set Y in X.

For A with (1.1), (1.2), (1.3), the following assertion is well-known (Komatsu [1, 2], cf. Yosida [4]).

Proposition 1.1. For any positive μ , $\{(\mu+A)^{-\alpha}; \alpha \ge 0\}$, $\{A^{\alpha}(\mu+A)^{-\alpha}; \alpha \ge 0\}$ are strongly continuous semi-groups of bounded linear operators. Both semi-groups are analytically continued to the half plane $\operatorname{Re} \alpha > 0$.

We also note the following relation (cf. Komatsu [2]): (1.4) $A^{\alpha}(\mu+A)^{-\alpha} = \mu^{-\alpha}(A^{-1}+\mu^{-1})^{-\alpha}$. We denote by $\Lambda^{+}(\mu; A)$ (resp. $\Lambda^{-}(\mu; A)$) the infinitesimal generator of $(\mu+A)^{-\alpha}$ (resp. $A^{\alpha}(\mu+A)^{-\alpha}$). We set $D^{\pm}(\mu; A) = D(\Lambda^{\pm}(\mu; A))$. We sometimes write $\Lambda^{\pm}(\mu)$, $D^{\pm}(\mu)$ instead of $\Lambda^{\pm}(\mu; A)$, $D^{\pm}(\mu; A)$.

^{k)} Partly supported by the Sakkokai Foundation.

A. YOSHIKAWA

[Vol. 49,

Proposition 1.2. $D^+(\mu)$ and $D^-(\mu)$ are independent of $\mu > 0$: $D^+(\mu) = D^+$, $D^-(\mu) = D^-$.

Proof. We first note the following elementary

Lemma 1.3. Let T_t be a strongly continuous group of bounded operators. If T_t is analytically continued in the sectors $\sum_{\tau=}^{t} \{\tau; \operatorname{Re} \tau \geq 0, |\arg \tau| < \theta_{\pm}\}, (0 < \theta_{\pm} < \pi/2)$, then its infinitesimal generator is bounded, and T_t is entire in t.

Proof. Under the assumption of Lemma, we see immediately that the spectrum of its infinitesimal generator B is compact. In particular,

$$T_{t}x = (2\pi i)^{-1} \int_{\Gamma} e^{-zt} (z-B)^{-1} x dz, \qquad (x \in X),$$

where Γ is a *bounded* closed curve containing the spectrum of B in its interior. This implies the lemma.

End of the proof of Proposition 1.2. If $\nu > 0$, we have

$$(\mu + A)^{-\alpha} = \{(\nu + A)(\mu + A)^{-1}\}^{\alpha}(\nu + A)^{-\alpha}$$

Since $\{(\nu+A)(\mu+A)^{-1}\}^{\alpha}$ is a group satisfying the hypothesis of Lemma 1.3, its infinitesimal generator $\Lambda_{\mu,\nu}$ is bounded. Thus, $x \in D^+(\nu)$ if and only if $x \in D^+(\mu)$, and

 $\Lambda^+(\mu)x = \Lambda^+(\nu)x + \Lambda_{\mu,\nu}x, \qquad x \in D^+.$

The other half of Proposition 1.2 is proved similarly.

Proposition 1.4. If $x \in D^+$ (resp. D^-), then $\Lambda^+(\mu)x$ (resp. $\Lambda^-(\mu)x$) is strongly differentiable in μ , and

(1.5)
$$d\Lambda^{+}(\mu)x/d\mu = -(\mu + A)^{-1}x, \quad x \in D^{+}$$

(resp.

(1.6) $d\Lambda^{-}(\mu)x/d\mu = -(\mu + A)^{-1}x, \quad x \in D^{-}).$

Proof. Since

$$(\mu+A)^{-\alpha}x - (1+A)^{-\alpha}x = -\alpha \int_{1}^{\mu} (\nu+A)^{-\alpha-1}x d\nu,$$

we have, by differentiating in α and letting $\alpha \rightarrow 0$,

$$\Lambda^{+}(\mu)x - \Lambda^{+}(1)x = -\int_{1}^{\mu} (\nu + A)^{-1}x d\nu, \qquad x \in D^{+}.$$

Here we used that $\Lambda_{\mu,\nu}$ in the proof of Proposition 1.2 is continuous in μ or $\nu > 0$. Hence, we get (1.5) after differentiation in μ . (1.6) is obtained analogously.

Corollary 1.5. The operator L with $Lx = \{A^{-}(\mu) - A^{+}(\mu)\}x, \quad x \in D(L),$ $D(L) = D^{+} \cap D^{-},$

is defined independently of $\mu > 0$.

Proposition 1.6. The operator L is closable.

Proof. First we note, for $x \in D^+ \cap D^-$,

(1.7)
$$(A^{\alpha}-I)(\mu+A)^{-\alpha}x = \int_{0}^{\alpha} A^{\beta}(\mu+A)^{-\alpha}Lxd\beta, \quad \alpha > 0, \ \mu > 0.$$

No. 3]

In fact, if we set $u(\alpha) = (A^{\alpha} - I)(\mu + A)^{-\alpha}x$, $x \in D^{+} \cap D^{-}$, then we have $\begin{cases} du(\alpha)/d\alpha = \Lambda^{+}(\mu)u(\alpha) + A^{\alpha}(\mu + A)^{-\alpha}Lx, \\ u(0) = 0. \end{cases}$

Thus,

$$u(\alpha) = \int_{0}^{\alpha} \exp\left((\alpha - \beta)\Lambda^{+}(\mu)\right) A^{\beta}(\mu + A)^{-\beta} L x d\beta$$
$$= \int_{0}^{\alpha} A^{\beta}(\mu + A)^{-\alpha} L x d\beta.$$

By differentiating (1.7) in μ , we obtain

(1.8)
$$(A^{\alpha}-I)(\mu+A)^{-\alpha-1}x = \int_{0}^{\alpha} A^{\beta}(\mu+A)^{-\alpha-1}Lxd\beta, \quad x \in D^{+} \cap D^{-}.$$

Now let $\alpha \in D^{+} \cap D^{-}$ be such that $\alpha \to \alpha$. From (1.8), we

Now let $z_n \in D^+ \cap D^-$ be such that $z_n \rightarrow z$, $Lz_n \rightarrow y$. From (1.8), we have

(1.9)
$$(A^{\alpha} - I)(\mu + A)^{-\alpha - 1} z = \int_{0}^{\alpha} A^{\beta}(\mu + A)^{-\alpha - 1} y d\beta$$

Here the right-hand side is differentiable in α , and $(\mu+A)^{-1}z \in D^+$. Thus the left-hand side of (1.9) is termwise differentiable in α . In particular, $(\mu+A)^{-1}z \in D^-$, and

$$\Lambda^{-}(\mu)(\mu+A)^{-1}z - \Lambda^{+}(\mu)(\mu+A)^{-1}z = (\mu+A)^{-1}y,$$

or

(1.10) $L(\mu+A)^{-1}z = (\mu+A)^{-1}y.$

Hence, if z=0, then y=0. Corollary 1.7. Let L^{\sim} be the closure of L. If $x \in D(L^{\sim})$, then

 $(\mu + A)^{-1}x \in D(L), and$

$$L(\mu + A)^{-1}x = (\mu + A)^{-1}L^{-x}$$

Proof. This follows from (1.10).

A similar discussion shows the following

Corollary 1.8. If $x \in D(L^{\sim})$, then $A(\mu+A)^{-1}x \in D(L)$, and $LA(\mu+A)^{-1}x = A(\mu+A)^{-1}L^{\sim}x$.

Corollary 1.9. If A is bounded, then $D(L)=D^-$, and $L^-=L$. If A^{-1} is bounded, then $D(L)=D^+$, and $L^-=L$.

Proof. If A is bounded, then $(\mu + A)^{-\alpha}$ satisfies the conditions of Lemma 1.3. Thus, $D^+ = X$. The other half follows similarly.

Definition 1.10. We define $\log A = L^{\sim}$. Corollary 1.11. If $x \in D^+ \cap D^-$, then

 $\log Ax = \log A(\mu + A)^{-1}x - \log (\mu + A)^{-1}x.$

Proposition 1.12. $\log A = -\log A^{-1}$.

Proof. Using (1.4), we have

$$\Lambda^{+}(\mu; A) = -\log \mu + \Lambda^{-}(\mu^{-1}; A^{-1}),$$

$$\Lambda^{-}(\mu; A) = -\log \mu + \Lambda^{+}(\mu^{-1}; A^{-1}).$$

Proposition 1.13.

(1.11) $\Lambda^{+}(\mu) = \log (\mu + A)^{-1};$

(1.12) $\Lambda^{-}(\mu) = \log A(\mu + A)^{-1}.$

Proof. Put $B = (\mu + A)^{-1}$. Since

$$B^{\alpha}(1+B)^{-\alpha}x - (1+B)^{-\alpha}x = (\mu+A)^{\alpha}(1+\mu+A)^{-\alpha}\int_{0}^{\alpha}\Lambda^{+}(\mu;A)(\mu+A)^{-\beta}xd\beta,$$

we have

$$\begin{split} &\Lambda^{-}(1;B)B^{\alpha}(1+B)^{-\alpha}x - \Lambda^{+}(1;B)(1+B)^{-\alpha}x \\ &= \Lambda^{-}(1;\mu+A)(\mu+A)^{\alpha}(1+\mu+A)^{-\alpha}\int_{0}^{\alpha}\Lambda^{+}(\mu;A)(\mu+A)^{-\beta}xd\beta \\ &+ (\mu+A)^{\alpha}(1+\mu+A)^{-\alpha}\Lambda^{+}(\mu;A)(\mu+A)^{-\alpha}x. \end{split}$$

 $\Lambda^+(1;B) = \Lambda^-(1; \mu + A)$ being bounded (Lemma 1.3), $x \in D(\Lambda^-(1; B))$ if and only if $x \in D(\Lambda^+(\mu; A))$, and

$$\Lambda^{-}(1;B)x - \Lambda^{+}(1;B)x = \Lambda^{+}(\mu;A)x.$$

By Corollary 1.9, we have (1.11). (1.12) is proved in a similar way.

2. Representation formula.

Proposition 2.1. If $x \in D(A^{\beta})$ for some $\beta, 0 < \beta < 1$, then (2.1) $\lim_{R \to \infty} \log R(R+A)^{-1}x = 0.$ If $x \in R(A^{\beta'})$ for some $\beta', 0 < \beta' < 1$, then (2.2) $\lim_{\epsilon \to \infty} \log A(\epsilon + A)^{-1}x = 0.$

Proof. Since

$$(R+A)^{-\alpha}x - R^{-\alpha}x = -\alpha \int_0^1 A(R+sA)^{-\alpha-1}x ds, \qquad x \in D(A^{\beta}),$$

$$\Lambda^+(R;A)x - \log R^{-1}x = -\int_0^1 A(R+sA)^{-1}x ds = 0(R^{\beta-1}).$$

(2.2) is proved similarly.

Proposition 2.2. If $x \in D(A^{\beta}) \cap R(A^{\beta'})$ for some $\beta, \beta', 0 < \beta, \beta' < 1$, then

(2.3)
$$\log Ax = (\log \nu)x + \lim_{R \to \infty} \int_{\nu}^{R} \mu^{-1}A(\mu + A)^{-1}xd\mu$$
$$-\lim_{\epsilon \to \infty} \int_{\epsilon}^{\nu} (\mu + A)^{-1}xd\mu$$

for every v > 0.

Proof. By Proposition 1.4,

$$d \log \mu(\mu + A)^{-1}x/d\mu = \{\mu^{-1} - (\mu + A)^{-1}\}x.$$

Thus, by Proposition 2.1,

$$-\log \nu(\nu+A)^{-1}x = \lim_{R\to\infty} \int_{\nu}^{R} \mu^{-1}A(\mu+A)^{-1}xd\mu.$$

Similarly,

$$\log A(\nu + A)^{-1}x = -\lim_{\varepsilon \to 0} \int_{\varepsilon}^{\nu} (\mu + A)^{-1}x d\mu.$$

Hence, Corollary 1.11 implies the proposition.

Corollary 2.3 (Nollau). If $x \in D(A^{\beta}) \cap R(A^{\beta'})$ for some $\beta, \beta', 0 < \beta$, $\beta' < 1$, then

(2.4)
$$\log Ax = \lim_{R \to \infty, s \to 0} \int_{s}^{R} (1+\mu)^{-1} (A-I)(\mu+A)^{-1} x d\mu.$$

Proof. We divide the integral in the right-hand side of (2.4):

No. 3]

$$\int_{a}^{R} (1+\mu)^{-1} (A-I)(\mu+A)^{-1} x d\mu = \int_{a}^{\nu} + \int_{\nu}^{R} = I_{a} + I^{R}, \qquad \nu > 0.$$

Then, as easily seen,

$$I_{*} = \{ \log (\nu + 1) - \log (1 + \varepsilon) \} x - \int_{*}^{\nu} (\mu + A)^{-1} x d\mu,$$

and

$$I^{R} = \int_{\nu}^{R} \mu^{-1} A(\mu + A)^{-1} x d\mu - \{\log R(R+1)^{-1} - \log \nu + \log (\nu + 1)\} x.$$

Hence, (2.4) follows from (2.3).

References

- Komatsu, H.: Fractional powers of operators. Pacific J. Math., 19, 285-346 (1966).
- [2] —: Fractional powers of operators. III. Negative powers. J. Math. Soc. Japan, 21, 89-111 (1969).
- [3] Nollau, V.: Über den Logarithmus abgeschlossener Operatoren in Banachschen Räumen. Acta Sci. Math., 30, 161-174 (1969).
- [4] Yosida, K.: Functional Analysis. Springer, Berlin (1965).