81. On Deformations of Quintic Surfaces

By Eiji HORIKAWA University of Tokyo

(Comm. by Kunihiko Kodaira, M. J. A., June 12, 1973)

Let S_0 be a non-singular hypersurface of degree 5 in the projective 3-space P^3 defined over C. For brevity, we call S_0 a non-singular quintic surface.

By a surface, we shall mean a compact complex manifold of complex dimension 2, unless explicit indications are given. We say that a surface S is a deformation of S_0 if there exists a finite sequence of surfaces $S_0, S_1, \dots, S_k, \dots, S_n = S$ such that, for each k, S_k and S_{k-1} belong to one and the same complex analytic family of surfaces.

If S is a deformation of a non-singular quintic surface, S has the following numerical characters:

(*)
$$p_q = 4$$
, $q = 0$, $c_1^2 = 5$,

where p_g , q and c_1^2 denote the geometric genus, the irregularity and the Chern number of S, respectively. In particular S is an algebraic surface (see [5], Theorem 9). Moreover, since S_0 is minimal, Theorem 23 of Kodaira [5] asserts that

(**) S is minimal.

In this note, we shall give a statement of the results on the structures and deformations of surfaces which satisfy the conditions (*) and (**). Details will be published elsewhere.

1. Structures.

Theorem 1. Let S be a minimal algebraic surface with $p_g=4$, q=0, and $c_1^2=5$. Then the canonical system |K| on S has at most one base point. There are two cases:

Case I. |K| has no base point. In this case, there exists a birational holomorphic map $f: S \rightarrow S'$ of S onto a (possibly singular) quintic surface S' in P^3 . S' has at most rational double points as its singularities.

Case II. |K| has one base point b. Let $\pi: \tilde{S} \rightarrow S$ be the quadric transformation with center at b. Then this case is divided as follows:

Case IIa. There exists a surjective holomorphic map $f: \tilde{S} \to P^1 \times P^1$ of degree 2.

Case IIb. There exists a surjective holomorphic map $f: \tilde{S} \rightarrow \sum_2$ of degree 2, where \sum_2 denotes the Hirzebruch surface of degree 2, i.e., \sum_2 is a rational ruled surface with a section Δ_0 with $(\Delta_0)^2 = -2$.

The proof is based on a detailed analysis of the rational map Φ_K :

 $S \rightarrow P^3$ defined by the canonical system |K|. The holomorphic maps f in the above statement are derived from Φ_K .

Corollary. If |K| has a base point, then there exists a surjective holomorphic map $g: S \rightarrow P^1$ whose general fibre is an irreducible nonsingular curve of genus 2. In particular, the rational map Φ_{2K} defined by the bicanonical system |2K| is not birational.

Conversely, we can construct every surface of type II as follows: First we construct a double covering S' of $W=P^1\times P^1$ or \sum_2 with appropriate branch locus on W. S' is a normal surface. Let \tilde{S} be the minimal resolution of singularities of S' (see [1], p. 81). We construct S' so that \tilde{S} contains one exceptional curve E. Contracting E to a point, we obtain a minimal algebraic surface with $p_g=4$, q=0, and $c_1^2=5$.

2. Deformations. First, we give some results on small deformations of a surface in consideration.

Proposition 1. i) The classes of surfaces of type I and of type IIa are, respectively, closed under small deformations.

ii) A surface of type I and a surface of type IIa do not belong to one and the same family (with non-singular base space).

Theorem 2. Let S be a surface of type IIb of which the canonical bundle is ample. Let $p: S \rightarrow M$ be the Kuranishi family of deformations of $S = p^{-1}(0)$ with $0 \in M$ (see [7]). Then

- i) $M=M_0\cup M_1$ where each M_i (i=0,1) is a 40-dimensional manifold,
 - ii) $N = M_0 \cap M_1$ is a 39-dimensional manifold,
- iii) $S_t = p^{-1}(t)$ is a non-singular quintic surface, a surface of type IIa, or a surface of type IIb according as $t \in M_0 N$, $t \in M_1 N$, or $t \in N$.

We now indicate an outline of the proof of Theorem 2. Let S denote a surface as in Theorem 2 and let Θ_S denote the sheaf of germs of holomorphic vector fields on S. We have $\dim H^1(S,\Theta_S)=41$ and $\dim H^2(S,\Theta_S)=1$. Let $D=\{t\in C^{41}: |t|<\varepsilon\}$ with $\varepsilon>0$ sufficiently small. Then there exists a (0,1)-form $\varphi(t)$ with coefficients in Θ_S depending holomorphically on $t\in D$ such that

$$M = \{t \in D : H[\varphi(t), \varphi(t)] = 0\},\$$

where H denotes the projection onto the space of harmonic forms with respect to a Hermitian metric on S and [,] denotes the Poisson bracket. Since dim $H^2(S, \Theta_S) = 1$, we may regard $H[\varphi(t), \varphi(t)]$ as a holomorphic function on D. We can prove that

$$H[\varphi(t), \varphi(t)] = t_1 t_2 + \text{(higher terms)},$$

for an appropriate choice of coordinates $(t_1, t_2, \dots, t_{41})$ on D.

On the other hand, applying an improved form of Theorem 2' of [3] to the holomorphic map $g: S \rightarrow P^1$ in Corollary to Theorem 1, we can

construct a 40-dimensional effectively parametrized family $p_1: S_1 \rightarrow M_1$ of deformations of $S = p_1^{-1}(0)$ with $0 \in M$ (see [6], Definition 6.4).

It follows that $H[\varphi(t), \varphi(t)]$ decomposes into a product q(t)r(t) with $q(t) = t_2 + \text{(higher terms)}, \ r(t) = t_1 + \text{(higher terms)}.$ This proves the assertion i).

Other assertions can be proved by applying the general theory on deformations of holomorphic maps [4].

It seems difficult to study the deformations of a surface of which the canonical bundle is not ample. However, applying a result of Brieskorn ([1], [2]), we can prove

Theorem 3. Every minimal algebraic surface with $p_q=4$, q=0, and $c_1^2=5$, is a deformation of a non-singular quintic surface.

References

- [1] Brieskorn, E.: Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen. Math. Ann., 166, 76-102 (1966).
- [2] —: Die Auflösung der rationalen Singularitäten holomorpher Abbildungen. Math. Ann., 178, 255-270 (1968).
- [3] Horikawa, E.: On deformations of holomorphic maps. Proc. Japan Acad., 48, 52-55 (1972).
- [4] —: On deformations of holomorphic maps. I (to appear in J. Math. Soc. Japan, 25 (1973)), II (in preparation).
- [5] Kodaira, K.: On the structure of compact complex analytic surfaces. I. Amer. J. Math., 86, 751-798 (1964).
- [6] Kodaira, K., and Spencer, D. C.: On deformations of complex analytic structures. I, II. Ann. of Math., 67, 328-466 (1958).
- [7] Kuranishi, M.: On the locally complete families of complex analytic structures. Ann. of Math., 75, 536-577 (1962).