133. Bounded Variation Property of a Measure

By Masahiro TAKAHASHI

Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1973)

1. Introduction. For an integral structure $\Gamma = (\Lambda; S, \mathcal{G}, Q)$ defined in [3], we shall discuss in this paper a certain type of bounded variation property of a pre-measure $\mu \in Q$. Through the discussion, some properties of the 'indefinite integral' $\sigma(\cdot, f, \mu)$, where σ is an integral with respect to Γ , and a theorem similar to Lebesgue's bounded ed convergence theorem will be obtained.

2. Bounded variation property.

Assumption 1. *M* is a set and *S* is a ring of subsets of *M*. *G* is a topological additive group and μ is a *G*-valued pre-measure on *S*.

Let us denote by \mathbb{CV} the system of neighbourhoods of $0 \in G$.

The pre-measure μ is *locally s-bounded* if, for any $X \in S$ and $X_i \in S$, $i=1, 2, \dots$, such that $X_j X_k = 0$ $(j \neq k)$, and for any $V \in \mathbb{V}$, there exists a positive integer n such that $\mu(XX_i) \in V$ for any $i \ge n$.

Proposition 1. If S is a pseudo- σ -ring and μ is a measure, then μ is locally s-bounded.

Proof. Let X and X_i , $i=1, 2, \cdots$, be elements of S such that $X_j X_k = 0$ $(j \neq k)$ and V an element of CV. Since S is a pseudo- σ -ring, $Y_n = \bigcup_{i=n}^{\infty} X X_i$ is an element of S for each $n=1, 2, \cdots$. Since μ is a measure, it follows from $Y_n \downarrow 0$ $(n \to \infty)$ that $\mu(Y_n) \to 0$ $(n \to \infty)$. Hence, for an element V_0 of CV such that $V_0 - V_0 \subset V$, we have a positive integer n such that $\mu(Y_i) \in V_0$ for any $i \ge n$. For this n and for any $i \ge n$, we have $\mu(XX_i) = \mu(Y_i - Y_{i+1}) = \mu(Y_i) - \mu(Y_{i+1}) \in V_0 \subset V$, which proves the proposition.

For an element V of $\subseteq V$, an element X of S is of V-variation if $\mu(XY) \in V$ for any $Y \in S$.

Then the following is easily seen:

Proposition 2. If an element X of S is of V-variation with $V \in \mathbb{CV}$, then XY is of V-variation for any $Y \in S$.

Proposition 3. Suppose that μ is a locally s-bounded measure and $X_i \downarrow 0 \ (i \rightarrow \infty)$ for $X_i \in S$, $i=1, 2, \cdots$. Then for any $V \in \mathbb{V}$ there exists a positive integer n such that X_n is of V-variation.

 $\rightarrow 0$ $(j\rightarrow\infty)$, there exists an $i_n > i_{n-1}$ such that $\mu(Y_{i_{n-1}}X_{i_n}) \in V_0$. Putting $Z_n = Y_{i_{n-1}} + Y_{i_{n-1}}X_{i_n}$, we have positive integers i_n and $Z_n \in S$, $n=1,2,\cdots$, defined inductively. It follows from $V \not\ni \mu(Y_{i_{n-1}}) = \mu(Z_n) + \mu(Y_{i_{n-1}}X_{i_n}) \in \mu(Z_n) + V_0$ that $\mu(Z_n) \notin V_0$. The relations $Z_n X_{i_n} = 0$ and $Z_m \subset Y_{i_{m-1}} \subset X_{i_{m-1}} \subset X_{i_n}$, where m > n, imply that $Z_j Z_k = 0$ $(j \neq k)$. Thus the locally s-boundedness of μ implies the existence of n such that $\mu(Z_n) = \mu(X_1 Z_n) \in V_0$. This is a contradiction and hence our proposition is proved.

Assumption 2. σ is an integral with respect to an integral structure $(\Lambda; S, G, Q)$ with $\Lambda = (M, G, K, J)$ and μ is an element of Q. Further

1) \mathcal{G} is a subgroup of the fundamental functional group of Λ determined by \mathcal{S} .

2) For each $k \in K$, the map φ_k of G into J defined by $\varphi_k(g) = g \cdot k$ is continuous.

Let us denote by \mathcal{W} the system of neighbourhoods of $0 \in J$.

Lemma 1. Suppose that $X \in S$ and that B is a totally bounded subset of K. Then for any $W \in W$ there exists an element V of $\bigcirc V$ satisfying the condition: if Y is an element of V-variation in S and if $Y \subset X$, then it follows that $\sigma(Y, f, \mu) \in W$ for any $f \in \mathcal{G}$ such that $f(Y) \subset B$.

Proof. (P1) Let \mathcal{F} be the total functional group of Λ and \mathcal{G}_0 the subgroup of \mathcal{F} generated by $\mathcal{S}K$. Denote by \mathcal{J} the abstract integral derived from σ relative to μ . Then, for a fixed $W_0 \in \mathcal{W}$ such that $2W_0 \subset W$, there exists a neighbourhood U of $0 \in K$ such that $\mathcal{J}(X, \tilde{U} \cap \mathcal{G}) \subset W_0$. Here we write $\widetilde{U'} = \{f \mid f \in \mathcal{F}, f(M) \subset U'\}$ for each $U' \subset K$.

(L1) Let U_0 be a neighbourhood of $0 \in K$ such that $-U_0 = U_0$ and $3U_0 \subset U$. Since B is totally bounded, there exist $b_j \in K$, $j=1, 2, \dots, n$, such that $B \subset \bigcup_{j=1}^n (b_j + U_0)$.

(P2) For a fixed $W_1 \in \mathcal{W}$ such that $nW_1 \subset W_0$, the continuity of the map $G \ni g \rightarrow g \cdot b_j \in J$ implies the existence of $V_j \in \mathcal{V}$ such that $V_j \cdot b_j \subset W_1$ for each j.

(L2) Put $V = \bigcap_{j=1}^{n} V_j \in \mathcal{O}$ and let Y be an element of V-variation in S such that $Y \subset X$. Then it suffices to show that $\mathcal{J}(Y, f) \in W$ for any $f \in \mathcal{G}$ such that $f(Y) \subset B$. Putting g = Yf we have $g \in \overline{\mathcal{G}}_0 \cap \mathcal{G}$ and this implies the existence of $\psi \in \mathcal{G}_0$ such that $g - \psi \in \widetilde{U}_0$. We can write $\psi = \sum_{k=1}^{m} Z_k a_k$ for some $Z_k \in S$ and $a_k \in K$, $k=1, 2, \cdots, m$, such that $Z_k Z_{k'} = 0$ $(k \neq k')$. It may be assumed that $\sum_{k=1}^{m} Z_k = Y$ and $Z_k \neq 0$ for each k. Let z_k be an element of Z_k . Then we have $g(z_k) = a_k + \{g(z_k) - \psi(z_k)\} \in a_k + U_0$ and the relation $g(z_k) = f(z_k) \in B$ implies the existence of j_k with $1 \leq j_k \leq n$ such that $g(z_k) \in b_{j_k} + U_0$. Thus it follows that a_k $-b_{j_k} \in 2U_0$. Putting $\varphi = \sum_{k=1}^{m} Z_k b_{j_k}$ we have $\varphi \in \mathcal{G}_0 \subset \mathcal{G}$ and $\psi - \varphi$ $= \sum_{k=1}^{m} Z_k (a_k - b_{j_k}) \in \widetilde{2U}_0$, which implies $g - \varphi = (g - \psi) + (\psi - \varphi) \in \widetilde{3U}_0 \subset \widetilde{U}$. Put $P_j = \sum_{j_{k=j}} Z_k$, $j=1, 2, \dots, n$. Then it follows that $\varphi = \sum_{j=1}^n P_j b_j$ and the V-variation property of Y implies that $\mu(YP_j) \in V \subset V_j$ for each $j=1, 2, \dots, n$.

(P3) Since $g, \varphi \in \mathcal{G}$ and $g-\varphi \in \tilde{U}$ imply $Y(g-\varphi) \in \tilde{U} \cap \mathcal{G}$, it follows that $\mathcal{J}(Y, g-\varphi) = \mathcal{J}(XY, g-\varphi) = \mathcal{J}(X, Y(g-\varphi)) \in W_0$. Further we have $\mathcal{J}(Y, \varphi) = \mathcal{J}(Y, \sum_{j=1}^{n} P_j b_j) = \sum_{j=1}^{n} \mathcal{J}(YP_j, b_j) = \sum_{j=1}^{n} \mu(YP_j) \cdot b_j \in \sum_{j=1}^{n} V_j \cdot b_j$ $\subset nW_1 \subset W_0$. Hence we have $\mathcal{J}(Y, f) = \mathcal{J}(Y, g) = \mathcal{J}(Y, g-\varphi) + \mathcal{J}(Y, \varphi)$ $\in 2W_0 \subset W$.

Thus Lemma 1 is proved. Since f(X) is totally bounded for $f \in \mathcal{G}$ and $X \in \mathcal{S}$ (Theorem 3.2 in [4]), then follows Corollary 1 below, which implies the absolute continuity, in a sense, of the indefinite integral $\sigma(\cdot, f, \mu)$.

Corollary 1. Let f be an element of \mathcal{G} . Then for any $X \in S$ and $W \in \mathcal{W}$ there exists an element V of \mathcal{CV} satisfying the condition: if an element $Y \in S$ contained in X is of V-variation then it follows that $\sigma(Y, f, \mu) \in W$.

Corollary 2. Suppose that μ is a locally s-bounded measure and $X_i \downarrow 0$ $(i \rightarrow \infty)$ for $X_i \in S$, $i=1, 2, \cdots$. Then for any totally bounded subset B of K and for any $W \in W$ there exists a positive integer n satisfying the condition: for any $Y \in S$ such that $Y \subset X_n$ and for any $f \in \mathcal{G}$ such that $f(Y) \subset B$ it holds that $\sigma(Y, f, \mu) \in W$.

Proof. For the sets $X = X_1 \in S$, $B \subset K$ and $W \in W$, let V be an element of \mathcal{V} satisfying the condition stated in Lemma 1. Then Proposition 3 implies the existence of n such that X_n is of V-variation. The relations $Y \in S$ and $Y \subset X_n \subset X$ imply that Y is of V-variation and thus the relations $f \in \mathcal{G}$ and $f(Y) \subset B$ imply $\sigma(Y, f, \mu) \in W$.

Let us show that the indefinite integral $\sigma(\cdot, f, \mu)$ is a measure if so is μ :

Proposition 4. Suppose that μ is a measure and $X_i \downarrow 0 \ (i \rightarrow \infty)$ for $X_i \in \mathcal{S}, i=1,2,\cdots$. Then for any $f \in \mathcal{G}$ it holds that $\sigma(X_i, f, \mu) \rightarrow 0$ $(i \rightarrow \infty)$.

Proof. For any $W \in \mathcal{W}$, it suffices to show the existence of a positive integer l such that $\sigma(X_i, f, \mu) \in W$ for each $i \ge l$. For $X = X_1$ let us consider the neighbourhoods W_0 and U stated in (P1) in the proof of Lemma 1. Putting g = Xf we have $g \in \overline{\mathcal{G}}_0 \cap \mathcal{G}$, which implies the existence of $\varphi \in \mathcal{G}_0 \subset \mathcal{G}$ such that $g - \varphi \in \tilde{U}$. Here we may write $\varphi = \sum_{j=1}^{n} P_j b_j$ with $P_j \in S$ and $b_j \in K$, $j = 1, 2, \dots, n$, such that $P_j P_{j'} = 0$ $(j \neq j')$. Now let us consider the neighbourhoods W_1 and V_j , $j = 1, 2, \dots, n$, stated in (P2). For each j, we have $X_i P_j \downarrow 0$ $(i \to \infty)$ and this implies the existence of l_j such that $\mu(X_i P_j) \in V_j$ for any $i \ge l_j$. Put $l = \max(l_1, l_2, \dots, l_n)$ and for any fixed $i \ge l$ put $Y = X_i$. Then we are to show that $\mathcal{J}(Y, f) \in W$ and this follows from the arguments in (P3).

No. 8]

Theorem 1. Suppose that S is a pseudo- σ -ring and μ is a measure. Let X be an element of S and let f and f_i , $i=1, 2, \dots$, be elements of \mathcal{G} such that: each $f_i - f$ is measurable¹⁾ and $\bigcup_{i=1}^{\infty} f_i(X)$ is totally bounded. Then the pointwise convergence $f_i(x) \to f(x)$ $(i \to \infty)$ implies the convergence $\sigma(X, f_i, \mu) \to \sigma(X, f, \mu)$ $(i \to \infty)$.

Proof. The subset f(X) of the closure \overline{B} of the totally bounded set $B = \bigcup_{i=1}^{\infty} f_i(X)$ is also totally bounded. Hence the subset $\bigcup_{i=1}^{\infty} ((f_i - f)(X))$ of the set $\{u - v | u \in B, v \in \overline{B}\}$ is totally bounded. This implies that we may assume f = 0.

Denote by \mathcal{J} the abstract integral derived from σ relative to μ and let W be an element of \mathcal{W} . Then it is sufficient to show the existence of a positive integer n such that $\mathcal{J}(X, f_i) \in W$ for each $i \geq n$.

For a fixed $W_0 \in \mathcal{W}$ such that $2W_0 \subset W$ there exists an open neighbourhood U of $0 \in K$ such that $\mathcal{J}(X, \tilde{U}) \subset W_0$, where $\tilde{U} = \{g \mid g \in \mathcal{G}, g(M)\}$ For each *i*, the measurability of f_i implies $f_i^{-1}(U) \cap X \in S$. $\subset U$. Hence, putting $X_i = \{x | x \in X, f_i(x) \notin U\}$, we have $X_i = X - f_i^{-1}(U) = X$ $-(f_i^{-1}(U) \cap X)$ and this implies $X_i \in S$. For $Y_j = \bigcup_{i=j}^{\infty} X_i$, $j=1, 2, \cdots$, it holds that $X \supset Y_j \in S$ and $Y_1 \supset Y_2 \supset \cdots$. Now we assert that $Y_j \downarrow 0$ $(j \rightarrow \infty)$. Otherwise there exists an element y of $\bigcap_{j=1}^{\infty} Y_j$. Then for each j there exists $i_j \ge j$ such that $f_{i_j}(y) \notin U$ and this contradicts the convergence of $f_i(y)$ to 0. Since Proposition 1 implies that μ is locally s-bounded, and since $B = \bigcup_{i=1}^{\infty} f_i(X)$ is totally bounded, Corollary 2 to Lemma 1 implies the existence of a positive integer n satisfying the condition: for any $Z \in S$ such that $Z \subset Y_n$ and for any $h \in \mathcal{G}$ such that $h(Z) \subset B$ it holds that $\mathcal{J}(Z, h) \in W_0$. Then we are to show that $\mathcal{J}(X, f_i)$ $\in W$ for each $i \ge n$.

It follows from $f_i(Y_n) \subset f_i(X) \subset B$ that $\mathcal{J}(Y_n, f_i) \in W_0$. Since $Y_n \supset Y_i \supset X_i$ implies $X - Y_n \subset X - X_i$, we have $f_i(x) \in U$ for any $x \in X - Y_n$ and this implies $(X - Y_n)f_i \in \tilde{U}$. Thus it follows that $\mathcal{J}(X - Y_n, f_i) = \mathcal{J}(X, (X - Y_n)f_i) \in W_0$ and hence we have $\mathcal{J}(X, f_i) = \mathcal{J}(X - Y_n, f_i) + \mathcal{J}(Y_n, f_i) \in 2W_0 \subset W$, which proves the theorem.

References

- M. Takahashi: Integration with respect to the generalized measure. I, II. Proc. Japan Acad., 43, 178-183, 184-185 (1967).
- [2] ——: Integration with respect to the generalized measure. III. Proc. Japan Acad., 44, 452–456 (1968).
- [3] ——: Integration with respect to the generalized measure. IV. Proc. Japan Acad., 44, 457-461 (1968).
- [4] ——: On measurable functions. I, II. Proc. Japan Acad., 49, 25–28, 29–32 (1973).

¹⁾ If K satisfies the first condition of countability, then the measurability of $f_i - f$ follows from the fact that S is a pseudo- σ -ring (Corollary 3 to Theorem 3.3 in [4]).