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(Comm. by Kinjir KuNu(I, i. ft. A., Oct. 12, 1973)

1. Introduction. For an integral structure /--(A , _, ) de-
fined in [3], we shall discuss in this paper a certain type of bounded
variation property of a pre-measure / e . Through the discussion,
some properties of the ’indefinite integral’ a(., f,/), where a is an
integral with respect to/, and a theorem similar to Lebesgue’s bound-
ed convergence theorem will be obtained.

2. Bounded variation property.
Assumption 1. M is a set and is a ring of subsets of M. G is

a topological additive group and [2 is a G-valued pre-measure on
Let us denote by cV the system of neighbourhoods of 0 e G.
The pre-measure ,a is locally s-bounded if, for any X e 3 and Xi

i--1,2,..., such that XX-O (]=/=tc), and for any V e -V, there exists
a positive integer n such that ,;(XX,) V for any i>=n.

Proposition 1. If is a pseudo-a-ring ancl /2 is a measure, then

[2 is locally s-bounded.
Proof. Let X and Xi, i--l, 2,..., be elements of q such that

XX-O (]=/=k) and V an element of cO. Since is a pseudo-a-ring,
Y-3XX, is an element of q for each n-l, 2, Since
measure, it follows from Y $ 0 (n-oo) that/2(Y)-0 (noo). Hence,
for an element V0 of c(? such that V0--V0c V, we have a positive inte-
ger n such tha/(Y,) e V0 for any i>=n. For this n and for any i>=n,
we have /(XX,)-/(Y,-Y,/I)-/2(Y,)-/(Y/I) e V0-V0 c V, which
proves the proposition.

For an element V of a--V, an element X of is of V-variation if

[2(XY) e V for any Y e .
Then the following is easily seen"

Proposition 2. If an element X of is of V-variation with V
then XY is of V-variation for any Y .

Proposition 3. Suppose that [2 is a locally s-bounded measure and
X, 0 (i-oo) for Xi , i-1, 2,.... Then for any V cV there exists
a positive integer n such that Xn is of V-variation.

Proof. Let us assume that no X, is of V-variation. Let V0 be an
element of cV such that 2VoC V. Put i0-1 and assume that a positive
integer i_ is defined. Then we have an element Y,_ of q such that
Yn-,Xn_, and/(Y-I) e V. Since Y_,Xj 0 (]-oo) implies [2(Y_IX
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--0 (]--.oo), there exists an in >i_ such that [(Y._,X,.) Vo. Putting
Z,- Y,._, + Y,._,X,., we have positive integers i and Z, e 3, n- 1,2,. .,
defined inductively. It follows from V z(Y,._,) =z(Z) +/(Y,._,X,.)
e p(Z)+Vo that Z(Zn)e Vo. The relations ZnX.--O and Z,,cY,_,
cX_,cX,., where re>n, imply that Z;Z=O (]k). Thus the locally
s-boundeclness of/ implies the existence of n such that z(Z)=[(XZ)
e V0. This is a contradiction and hence our proposition is proved.

Assumption 2. a is an integral with respect to an integral struc-
ture (/1;3, g, () with d--(M, G, K, J) and [ is an element of _. Fur-
ther

1) is a subgroup of the fundamental functional group of d de-
termined by q.

2) For each k e K, the map of G into J defined by (g)--g. k
is continuous.

Let us denote by q the system of neighbourhoods of 0 e J.
Lemma 1. Suppose that X e 3 and that B is a totally bounded

subset of K. Then for any W e 9P there exists an element V of
satisfying the condition" if Y is an element of V-variation in and

if YcX, then it follows that a(Y, f, [) e W for any f e such that
f(Y)cB.

Proof. (P1) Let K be the total functional group of d and g0 the
subgroup of generated by qK. Denote by the abstract integral
derived from a relative to /. Then, for a fixed W0 e 9 such that

2W0c W, there exists a neighbourhood U of 0 e K such that d(X, U f3 .’)

c W0. Here we write U’-{flf e , f(M)c U’} for each U’cK.
(L1) Let U0 be a neighbourhood of 0 e K such that --Uo-Uo and

3UoU. Since B is totally bounded, there exist beK, ]=1,2, ...,n,
such that Bt._J= (b+Uo).

(P2) For a fixed W e q.Y such that nWWo, the continuity of
the map G gg. b e J implies the existence of. V e c such that V. b
cW ior each ].

(L2) Put V=

__
V e c? and let Y be an element of V-variation

in 3 such that YX. Then it suffices to show that (Y, f)e W or
any f e such that f(Y)cB. Putting g= Yf we have g e 0 and
this implies the existence of e (30 such that g-- e Uo. We can write

=,’=Za or some Z e and a e K, k- 1, 2, ., m, such that
ZZ,-O (k:=/=:k’). It may be assumed that _Z=Y and Z:/=0 for
each k. Let z be an element of Z. Then we have g(z)--a/{g(z)
--(z)} e a+ U0 and the relation g(z)-f(z) e B implies the existence
of ] with 1 <__ ] <= n such that g(z) e b/ Uo. Thus it ollows that

--be2U0. Putting :_Zb we have e_q0 and --.-=--= Z(a,--b) e 2U0, which implies g---(g--)+(-) e 3UoU.
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Put P- ,.,= Z, ]-1, 2, ., n. Then it *ollows that =,]= Pb
and the V-variation property ot Y implies that [2(YP)e VcVj or
each ]- 1, 2, ., n.

(P3) Since g, e and g- e U imply Y(g-) e U , it follows
that q(Y, g--)--q(XY, g-)--q(X, Y(g--)) e Wo. Further we have
d(Y, )-(Y, ]=IPb)==I(YP, b)--]=It(YP).b e=V.b
nW1 Wo. Hence we have (Y, f)--5(Y, g) (Y, g--) / q(Y, )

e 2WoW.
Thus Lemma 1 is proved. Since f(X) is totally bounded or f e _q

and X e (Theorem 3.2 in [4]), then follows Corollary 1 below, which
implies the absolute continuity, in a sense, o the indefinite integral
a(., f,/).

Corollary 1. Let f be an element of . Then for any X e and
W e c there exists an element V of c satisfying the condition" if an
element Y e contained in X is of V-variation then it follows that
a(Y, f, [2) W.

Corollary 2. Suppose that l is a locally s-bounded measure and
X, 0 (i--oo) for X, e S, i--1,2, Then for any totally bounded
subset B of K and for any W e there exists a positive integer n
satisfying the condition" for any Y e S such that YcX and for any

f e such that f(Y)cB it holds that a(Y, f, t2) e W.
Proof. For the sets X-XleS, BcK and Weq//, let V be an

element of c(? satisfying the condition stated in Lemma 1. Then Pro-
position 3 implies the existence of n such that X is of V-variation.
The relations Y e S and YcXX imply that Y is of V-variation and
thus the relations f e and f(Y)B imply a(Y, f, [2) e W.

Let us show that the indefinite integral a(., f,/) is a measure if
so is/"

Proposition 4. Suppose that [2 is a measure and X, 0 (i-c) for
X, e , i-1, 2, .... Then for any f _q it holds that a(X,, f, t)-O
(io).

Proof. For any W e q/Y, it suffices to show the existence of a
positive integer such that a(X,, f, [2)e W for each i>=l. For X--X
let us consider the neighbourhoods W0 and U stated in (P1) in the proof
of Lemma 1. Putting g=Xf we have g e 0V _q, which implies the
existence of 9e-0-q. such that g--9 e U. Here we may write 9=Pjb with P e q and b e K, ]= 1, 2, ., n, such that PP,--O
(]=/=]’). Now let us consider the neighbourhoods W and V, ]
=1, 2, ..., n, stated in (P2). For each ], we have X,P 0 (ic) and
this implies the existence of l such that t(X,P)e V for any i>__l.
Put l=max (l,12, ...,l)and for any fixed i>=l put Y--X,. Then we
are to show that d(Y, f)e W and this follows from the arguments in
(P3).
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Theorem 1. Suppose that is a pseudo-a-ring and [2 is a measure.
Let X be an element of and let f and fi, i=l, 2,..., be elements of
such that" each f--f is measurable1) and %1 fi(X) is totally bound-

ed. Then the pointwise convergence f(x)-f(x) (i-oo) implies the
convergence a(X, fi, [2)-a(X, f, [2) (ioo).

Proof. The subset f(X) o the closure B of the totally bounded
set B =1 f(X) is also totally bounded. Hence the subset
U= ((f--f)(X)) of the set {u--vlu e B, v e B} is totally bounded. This
implies that we may assume f--0.

Denote by q the abstract integral derived from a relative to ,a and
let W be an element of cW. Then it is sufficient to show the existence
of a positive integer n such that q(X, f)e W for each i>n.

For a fixed W0 e cW Such that 2W0cW there exists an open neigh-
bourhood U of 0 e K such that q(x, U)c Wo, where U-{gig e g, g(M)
c U}. For each i, the measurability of f implies f(U)X e .
Hence, putting X-{xlx e X, f(x) U}, we have X-X--f?(U)-X

-1--(f (U)C X) and this implies X e . For Y]-UT=] X, ]-1, 2, ...,
it holds that XDY e and YD YD.... Now we assert that Y] $ 0
(]oo). Otherwise there exists an element y of (= Y. Then for
each ] there exists i]>] such that f](y)e U and this eontradietg the
convergence of f(y)to 0. Since Proposition 1 implies that/ is locally
s-bounded, and since B--T= f(X) is totally bounded, Corollary 2 to
Lemma 1 implies the existence of a positive integer n satisfying the
condition" for any Z e q such that ZcY and for any h e g such that
h(Z) cB it holds that q(z, h) e W0. Then we are to show that q(X, fD
e W for each i>n.

It follows from f(Yn) Cf(X) cB that q(Y, f3 e Wo. Since
Y,DYDX implies X-YcX-X, we have f(x) e U for any
x eX-Y and this implies (X--Y)fe U. Thus it follows that
q(X-Y, fD-5(X, (X-YDf) e Wo and hence we have q(X, f)
=q(X--Y, fD+q(Y, fD e 2W0c W, which proves the theorem.
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1) If K satisfies the first condition of countability, then the measurability of
f,--f follows from the fact that is a pseudo-a-ring (Corollary 3 to Theorem 3.3 in [4]).


