131. On Normal Approximate Spectrum. VI

By Masatoshi FUJII and Masahiro NAKAMURA Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1973)

1. Introduction. For a unital C^* -algebra \mathfrak{A} , the connectedness of the set $G[\mathfrak{A}]$ of all regular members of \mathfrak{A} is discussed in several occasions: In an early stage, Kakutani observed in [14; pp. 280–281], $G[\mathfrak{A}]$ is connected if \mathfrak{A} is the algebra $\mathfrak{B}(\mathfrak{H})$ of all operators acting on a Hilbert space \mathfrak{H} . Kuiper [13] proved that the homotopy group $\pi_m(G[\mathfrak{A}])$ vanishes for all m if $\mathfrak{A} = \mathfrak{B}(\mathfrak{H})$. Breuer [1] generalized Kuiper's theorem for every semifinite properly infinite factor. However, if \mathfrak{A} is not large, then the situation changes. Kakutani pointed out in [14; p. 294], the set of all regular elements of the algebra $C(S^1)$ of all continuous functions on the unit circle S^1 is not connected: $G[C(S^1)]$ has infinitely many components each of which contains one of

(1) $e_n(s) = e^{2\pi i ns}$ $(n=0, \pm 1, \pm 2, \cdots)$. In the present note, the connectedness of $G[\mathfrak{A}]$ for a general C^* algebra \mathfrak{A} is considered in §2, where some theorems of Cordes and Labrousse [6] are given alternative proofs, and they are combined with a theorem of Royden [15]. In §3, a unital C^* -algebra generated by an operator will be discussed; theorems on the algebraic theory of Fredholm operators, discussed by Breuer-Cordes [2] and Coburn-Lebow [4], are applied, and some elementary properties of the index are proved. In §4, the unital C^* -algebra generated by the unilateral shift is discussed to illustrate these considerations. In §§ 3–4, the normal approximate spectrum of the generator plays a central role.

2. Connectedness. A member A of $G[\mathfrak{A}]$ of a unital C*-algebra \mathfrak{A} is homotopic (in $G[\mathfrak{A}]$) with $B \in G[\mathfrak{A}]$ if there is a continuous way $A_t(0 \leq t \leq 1)$ in $G[\mathfrak{A}]$ with $A_0 = A$ and $A_1 = B$.

The following two theorems are obtained in [6] with somewhat different proofs:

Theorem 1 (Cordes-Labrousse). If $H \in \mathfrak{A}$ is an invertible and positive element, then H is homotopic with 1.

Define

(2) $H_t = t + (1-t)H$ $(0 \le t \le 1)$. Then H_t is positive and invertible by the Gelfand representation (of the unital C*-algebra generated by H). H_t is continuous in t with $H_0 = H$ and $H_1 = 1$; hence H is homotopic with 1.

Theorem 2 (Cordes-Labrousse). If $A \in G[\mathfrak{A}]$ and

No. 8]

is the polar decomposition of A, then A is homotopic with U.

By the polar decomposition of operators, the invertibility of H follows from that of A; hence $U=AH^{-1}\in\mathfrak{A}$ is also invertible. By (2), A is homotopic with U via

which is continuous in t with $A_0 = A$ and $A_1 = U$.

Let $U[\mathfrak{A}]$ be the group of all unitary members of \mathfrak{A} . Suppose that $G_{1}[\mathfrak{A}]$ (resp. $U_{1}[\mathfrak{A}]$) is the arcwise connected principal component of $G[\mathfrak{A}]$ (resp. $U[\mathfrak{A}]$) containing 1. Then $G_{1}[\mathfrak{A}]$ (resp. $U_{1}[\mathfrak{A}]$) is a normal subgroup.

Theorem 3. $U_1[\mathfrak{A}] = U[\mathfrak{A}] \cap G_1[\mathfrak{A}].$

If $U \in G[\mathfrak{A}]$ is homotopic in $G[\mathfrak{A}]$ with 1 via A_t , and if $A_t = U_t H_t$ is the polar decomposition of A_t for every t, then H_t is continuous in t, and so $U_t = A_t H_t^{-1}$ is continuous in t, with $U_0 = U$ and $U_1 = 1$; hence Uis homotopic with 1 in $U[\mathfrak{A}]$, so that the theorem is proved.

Theorem 4. $U[\mathfrak{A}]/U_1[\mathfrak{A}]$ is isomorphic to $G[\mathfrak{A}]/G_1[\mathfrak{A}]$.

If U (resp. V) $\in U[\mathfrak{A}]$ is homotopic with A (resp. B) via A_t (resp. B_t), then UV is homotopic with AB via A_tB_t , which proves that the product in $G[\mathfrak{A}]/G_1[\mathfrak{A}]$ is represented by the unitary members up to homotopic.

By virtue of Theorem 4, the cohomology $H[\mathfrak{A}]$ of \mathfrak{A} is introduced by

(5) $H[\mathfrak{A}] = U[\mathfrak{A}]/U_1[\mathfrak{A}] = G[\mathfrak{A}]/G_1[\mathfrak{A}].$

This name may be justified in the next section.

Let \Re be a closed (two-sided) ideal of \mathfrak{A} . Then the natural homomorphism π of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{A}$ defines

(6) $F(\mathfrak{A};\mathfrak{R}) = \pi^{-1}G[\mathfrak{A}/\mathfrak{R}].$

Each member of $F(\mathfrak{A}; \mathfrak{R})$ is called \mathfrak{R} -Fredholm according to a recent convention due to [4] and [5]. By [4; Theorem 2.1], the following theorem is established:

Theorem 5 (Coburn-Lebow). If $H[F(\mathfrak{A}; \mathfrak{R})]$ is the set of all (arcwise connected) components of $F(\mathfrak{A}; \mathfrak{R})$ with the natural composition, then $H[F(\mathfrak{A}; \mathfrak{R})]$ is isomorphic to $H[\mathfrak{A}/\mathfrak{R}]$.

In the remainder of the note, it will be assumed that $\mathfrak{A}/\mathfrak{R}$ is abelian. Coburn and Lebow pointed out in [4; p. 579], the following theorem follows from [15; § 7]:

Theorem 6 (Royden). $H[\mathfrak{A}/\mathfrak{R}]$ is isomorphic to the first Čech cohomology group $H^1(X, Z)$ if $\mathfrak{A}/\mathfrak{R}$ is abelian, where X is the character space of all characters of $\mathfrak{A}/\mathfrak{R}$ (equipped with the weak* topology) and Z is the additive group of all integers.

Hence $H[F(\mathfrak{A}; \mathfrak{R})]$ is isomorphic to $H^1(X, Z)$.

3. Index. For an operator T on a (separable) Hilbert space \mathfrak{H} , a complex number λ is a normal approximate propervalue of T if there

is a sequence $\{x_n\}$ of unit vectors such that

(7) $||(T-\lambda)x_n|| \rightarrow 0 \text{ and } ||(T-\lambda)^*x_n|| \rightarrow 0.$

The normal approximate spectrum $\pi_n(T)$ is the set of all normal approximate propervalues, which is a (possibly void) compact set in the complex plane, cf. [7].

If \mathfrak{A} is the unital C^* -algebra generated by T, then it is proved in [7] and [12] that $\lambda \in \pi_n(T)$ if and only if there is a character ϕ of \mathfrak{A} such as

(8)

 $\phi(T) = \lambda.$

 \mathfrak{A} contains the *pseudoradical* \mathfrak{R} by which $\mathfrak{A}/\mathfrak{R}$ is isomorphic to $C(\pi_n(T))$, cf. [9; § 5].

If $T \in F(\mathfrak{A}; \mathfrak{R})$, then T is called briefly a *T*-Fredholm operator. The set of all *T*-Fredholm operators is denoted by F(T). The cohomology of T is defined by $H[T] = H[\mathfrak{A}/\mathfrak{R}]$, which is an algebraic (and hence unitary) invariant.

Royden's theorem implies

Theorem 7. The cohomology H[T] of an operator T is isomorphic to the first Čech cohomology group $H^1(\pi_n(T), Z)$, which is also isomorphic to H[F(T)]:

(9) $H[T] = H[F(T)] = H^{1}(\pi_{n}(T), Z).$

For a T-Fredholm operator A, the *index* i(A) is defined by

(10) $i(A) = [A^{\pi} / |A^{\pi}|],$

where [f] for a unimodular continuous function f on $\pi_n(T)$ is the (arcwise connected) component of $U[C(\pi_n(T)]$ containing f.

In (10), every step of the mapping:

 $A \rightarrow A^{\pi} \rightarrow A^{\pi} / |A^{\pi}| \rightarrow [A^{\pi} |A^{\pi}|]$

is multiplicative, and the right-hand side of (10) is an element of H[T] by (5). If the composition of the cohomology H[T] is written additively, then the following theorem on elementary properties of the index is obvious; compare with [2; § 4]:

Theorem 8. The index i(A) on the set F(T) of T-Fredholm operators satisfies:

(11) i(AB) = i(A) + i(B),

(12)
$$i(A^*) = -i(A),$$

(13)
$$i(1)=0,$$

for every $A, B \in F(T)$ and $K \in \Re$.

In the present general setting, it is uncertain that the index coincides with the usual index due to Atkinson. A special case is discussed in the next section.

4. Example. Let \mathfrak{A} be the unital C^* -algebra generated by the unilateral shift T of multiplicity 1 acting on $\mathfrak{H} = l^2$. By the fact that

598

 $1-TT^*$ is a one-dimensional projection, \mathfrak{A} contains the algebra $\mathfrak{S}(l^2)$ of all compact operators on l^2 . In [3], Coburn proved that the pseudoradical of \mathfrak{A} is $\mathfrak{S}(l^2)$ and $\mathfrak{A}/\mathfrak{S}(l^2)$ is isometrically isomorphic to $C(S^1)$ or $S^1=\pi_n(T)$ (cf. [7; § 4] for another proof).

It is not hard to see that one can calculate $H^1(S^1, Z)$ to show (15) H[T] = Z. However, (15) is given by an another way: By (5), H[T] is the (multiplicative) group of all unimodular continuous functions modulo the principal component which is isomorphic to the first homotopy group

 $\pi_1(S^1) = [S^1, S^1] = Z$, cf. (1).

Hence (10) gives

(16)
$$i(A) = -\deg \frac{A^{\pi}}{|A^{\pi}|},$$

where deg f is the degree of a mapping f which maps S^1 to S^1 . By Theorem 8, i(A) satisfies (11)-(14).

By (16), it is easy to deduce that

(17) $i(T^n) = -n \text{ and } i(T^{*n}) = m.$

Hence, by Theorems 7 and 8, each member of H[F(T)] contains one and only one of T^n or T^{*m} .

On the other hand, the usual index of a Fredholm operator A is given by

(18) $\nu(A) = \dim \ker A - \operatorname{codim} \operatorname{ran} A,$

from which one has

(19) $\nu(T^n) = -n \quad \text{and} \quad \nu(T^{*n}) = m.$

Since the pseudoradical of \mathfrak{A} is $\mathfrak{S}(l^2)$, a *T*-Fredholm operator is a Fredholm operator in the usual sense. Hence the following theorem on the index is proved:

Theorem 9. For a Fredholm operator A included in the unital C^* -algebra generated by the unilateral shift of multiplicity 1, the index i(A) is equal to the usual index $\nu(A)$.

At this end, a trivial application of the index is listed: An operator R is a square root of T if $R^2 = T$. It is well-known that the unilateral shift T has no square root. A weak form of this fact follows from the properties of the index without any computation: if $R \in F(T)$ and $R^2 = T$, then 2i(R) = i(T) = -1 by (11) and (17) which contradicts (15); hence there is no square root of the unilateral shift T which is T-Fredholm.

References

- M. Breuer: A generalization of Kuiper's theorem to factors of type II∞.
 J. Math. Mech., 16, 917-925 (1967).
- [2] M. Breuer and H. O. Cordes: On Banach algebras with σ-symbol. J. Math. Mech., 13, 313-323 (1964).

- [3] L. A. Coburn: The C*-algebra generated by an isometry. Bull. Amer. Math. Soc., 73, 722-726 (1967).
- [4] L. A. Coburn and A. Lebow: Algebraic theory of Fredholm operators. J. Math. Mech., 15, 577-584 (1966).
- [5] H. O. Cordes: On a generalized Fredholm theory. Crelle's J., 227, 121-149 (1967).
- [6] H. O. Cordes and J. P. Labrousse: The invariance of the index in the metric space of closed operators. J. Math Mech., 12, 693-716 (1963).
- [7] M. Enomoto, M. Fujii, and K. Tamaki: On normal approximate spectrum. Proc. Japan Acad., 48, 211-215 (1972).
- [8] M. Fujii: On normal approximate spectrum. V. Proc. Japan Acad., 49, 416-419 (1973).
- [9] M. Fujii and R. Nakamoto: On normal approximate spectrum. II. Proc. Japan Acad., 48, 297-301 (1972).
- [10] ——: On normal approximate spectrum. IV. Proc. Japan Acad., 49, 411– 415 (1973).
- [11] M. Fujii and K. Tamaki: On normal approximate spectrum. III. Proc. Japan Acad., 48, 389-393 (1972).
- [12] I. Kasahara and H. Takai: Approximate propervalues and characters of C*-algebras. Proc. Japan Acad., 48, 91-93 (1972).
- [13] N. H. Kuiper: The homotopy type of the unitary group of Hilbert space. Topology, 3, 19-30 (1965).
- [14] C. E. Rickart: General Theory of Banach Algebras. D. van Nostrand, Princeton (1960).
- [15] H. L. Royden: Function algebras. Bull. Amer. Math. Soc., 69, 281–289 (1963).