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In the ’classical’ surgery theory on compact manifolds, all
Hermitian forms to be considered are nonsingular [5]. However, in
recent developments in surgery theory [2], [4], we have encountered a
some-what curious situation, in which a homomorphism of rings h" R--.S
is given, and Hermitian forms to be considered are defined over R and
nonsingular over S. For example, consider a homomorphism h" Z[$, -]
-*Z defined by h($)=l. Then it is proven that the ’Witt groups’ of
_+ t-Hermitian forms over Z[t, t-] which become nonsingular over Z
are isomorphic to the higher dimensional knot cobordism groups. See
[3], [4].

In this note we shall formulate ( 2) some basic notions concerning
the Hermitian forms of the above type, in the framework of, or as a
variant of, Wall’s L-theory [5] [6], and discuss some elementary pro-
perties. We also give an algebraic proof of a cancellation theorem**>

which was proven in [4] by a topological method.
Conventions. We always consider rings with 1, not necessarily

commutative, satisfying the condition" The antc of a free module
over the ring is well-defined. All modules will be finitely generated
right modules. Let R be a ring, V a quotient group of K(R)--GL(R)/
E(R). A basis of a free R-module is V-equivalen to another basis if
the transformation matrix is V-simple, in other words, if it represents
the zero element of V. A free module with a fixed V-equivalence class
of bases is said to be V-based, and any basis in the class is called a
V-preferred basis. We sometimes omit the prefix ’V-’ if it is obvious
in the context.

1. u-quadratic forms (The main reference is [5].). We fix a
ring R with (additive) involution aa such that ab-ba, and -a
(va, b e R). Note that 1-1. A unit u is admissible if u e Center(R)
and =u-. Let M be an R-module, u an admissible unit. A u-quadratic

form (, t) on M consists of functions " M M--,R, /" M-.R/{a-aul
*) The author is partially supported by the Ffijukai Foundation.

**) Cappell-Shaneson has also given a proof [2, Lemma 1.3]. However, a

property of S-isometrics (in our terminology) in their proof does not seem to be
so trivial as they asserted. It will be proven in the present paper, Theorem 3.
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a e R} satisfying the ollowing five properties"
( ) 2 is R-linear in the second variable,
(ii) 2(x, y)-2(y, x)u,
(iii) 2(x, x)=/(x) +/(x)u,
(iv) /(x + y)=/(x) +/(y) + (x, y),
( v ) /(xa)--a/(x)a, cr all x, y e M a e R.

I M is a projective module, there is a more cenvenient definition
[6, Theorem 1], see also [1]. One should remark that 2 is u-Hermitian
in the sense o Bourbaki, ALGBRE, ch. 9, 3, nl.

We wilt call the triple (M,2,/) a u-quadratic module over R.
Capital letters X, Y, etc. denote u-quadratic modules. The orthogonal
sum X_[_ Y is defined as usual.

A u-quadratic module X-(M, ,/) is said to be nonsingular if M
is a ree V-based module and the associated R-homomorphism A2’ M
-Hom(M, R) defined by (A2(x))(y)--(x, y) is a V-simple isomorphism.
Our definition is clearly more restrictive than the usual one [6].

A typical example of a nonsingular u-quadratic module is a (u-)
standard plane (eRfR, ,/) defined by 2(e, f)- 1, 2(f, e)-u, /(f)
=/(e)-0, where eRfR denotes a ree mdule o rank 2 with basis
{e, f}. An rthogonaI sum of copies of it is called a (u-) kernel.

We quote a characterization o a kernel due to Wall [5, Lemma
5.3]"

Lemma 1. A nonsingular u-quadratic module (M, , l) is a kernel
if and only if M has a free V-based submodule H, with a preferred
basis extending to one of M, and so defining a preferred class of bases
of M/H, such that (HH)-O, /(H)--0, and the map M/H
--Hom(H, R) induced by is a V-simple isomorphism.

Such a submdule is called a subkernel.
2. Relative notions. We throughout fix an onto homomorphism

h" R--S o2 rings with involutions such that h(a)=h[a) (va e R). Then
the image of an admissible unit is admissible, and, as usual, a u-
quadratic module X=(M, , ) over R gives rise to an h(u)-quadratic
module X(R)S-(M(R)S, 2’,[’) over S. I the induced h(u)-quadratic
module X(R)S is nonsingular, X is said to be S-nonsingular. (A
quotient gro.up V o K(S) is understood to be fixed.) To abbreviate
the terminology, we will henceorth refer to an S-nonsingular u-
quadratic mdule over R as an S-nonsingular u-form. Fr an S-
nonsingular u-form (M, , ), M(R)S is an S-ree mdule by ur defini-
tion 2 nonsingularity, but M is not necessarily R-ree. A set o2 ele-
ments ef M, {x,..., x,} is called a pre-basis if the image {x(R)l,..., Xn
(R)1} is a preferred basis o M(R)S. If M itsel is R-ree, we call X a

free u-form. Also it is always assumed that a basis o M is chosen so
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that it is a pre-basis.
An S-nonsingular u-2orm X=(M, 2,/) is said to be null-cobordan

if there exists a submodule HM, not necessarily a direct summand,
such that 2(HH)=O, p(H)=0 and H is mapped onto a subkernel of
X(R)S under the canonical mpping MM(R)S. Note that X(R)S is,
then, a kernel by Lemma 1. Following Cappell and Shaneson [2] we
call such a submodule H a pre-subkernel. (In our previous paper [4],
H was called a Seifert subkernel.) X is stably null.cobordant if an
orthogonal sum X_[_(a kernel) is null-cobordant.

’Witt groups’. Let u(h) be the Grothendieck group of all iso-
morphism classes of S-nonsingular u-orms, and let [(h) be the sub-
group generated by all stably null-cobordant orms. The ’Witt group’
of S-nonsingular u-orms is defined by the quotient ((h)/(h).
Since this generalizes the (even dimensional) Wall groups L, we will
denote it by _L’[(h). Cappell-Shaneson’s F-groups [2] and P-groups
introduced in [4] are ormulated as various special cases of these _-
groups. *)

A similar construction gives the ’Witt group’ _u(h) of all S-non-
singular free u-forms. There is a ntural homomorphism p: _L’u(h)
-_[(h).

Proposition 2. p is an isomorphism.. S.isometries. A convenient class of morphisms in the cate-
gory cf S-nonsingular u-forms is that oi S-isometries defined as fol-
lows: Let X=(M, 2,/), Y--(N,$,) be S-nonsingular u-orms. An
R-homomorphism :M--)N is an S-isometry i (i) preserves u-quad-
ratic orms ((x), (y))=2(x, y), ;((x)) =/(x) for all x, y e M, and (ii)
I:M(R)S-N(R)aS is a V-simple isomorphism. (Thus (R)1 is an
isometry in the usual sense.) is not necessarily injective nor sur-
jective. In this section we will prove

Theorem 5. Let X-Y be an S-isometry. Then X is stably
null-cobordant if and only if Y is stably null-cobordant.

The ’only if’ part is not difficult. The proo of the converse is
based on the following ’restricted case’.

Lemma 4. Let X--Y be as above, and suppose that X is a free
u-form. Then if Y is stably null-cobordant, so is X.

Proof. By adding copies of standard planes, we may assume that
Y=(N, ,) is actually a null-cobordant u-orm with a pre-subkernel
KN. Let ’N-N/K be the quotient map. The proof is divided
into 3 steps.

(1) I the composite o is onto, then X is null-cobordant. In

*) For example, let h:Z[t,t-1]--.Z be a homomorphism h(t)=l. Then Fn(h)
=.El_}l)n(h), and Pn(h)=.E}_l)nt(h), where {0} stands or a trivial group.
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fact fp-(K) is a pre-subkernel of X.
(2) In the case Coker (=ofp):/=0, proceed as follows. Consider an

orthogonal sum Y’=Y_l_(a standard plane with basis {e, f}). Then
K’=KeR is a pre-subkernel of Y’. Let z0 be an element N, and
define an R-homomorphism fp" MxRyRoNeRfR by setting

9’1M=9, 9’(x)=zo@e, 9’(y)=f, where M3xR@yR is a direct sum of M
and a free module with basis {x, y}. Define a u-quadratic form (’, ’)
on MxR@yR as follows" (Y,p’)lM=(,p), Y(m, x)=(9(m), z0) (m
e M), Y(m, y)=0 (m e M), p’(x)=(z0),/’(y)=0, 2’(x, y)= 1, and ’(y, x)
=u. Then 9’" X’-Y’ turns out to be an S-isometry, where X’--(M
xR@yR, 2’, l’). Let ’" NeR@fR-.N@eRfR/K’ be the quotient
map. Then it is easily verified that Coker (’og’)Coker (=og)/(Zo).
Therefore by taking suitable z0, we can make Coker (=o9) strictly
’smaller’.

(3) The u-quadratic module X’ constructed above is isomorphic to
X

_
(a standard plane).
Proof. Here we use the assumption that X--(M, , [2) is a free

u-form. Let {m, ..., m,} be a basis of M, which is also a pre-basis.
Then an isomorphism I" X_[_(a standard plane with basis {e, f})-X’
is explicitly constructed as follows"

I(e)=x--yc, I(f)--y,
and

I(m,)=m,-- ye,u, i= 1, ., s,
where c--V(Zo) rood {a--aula e R} and c,=Y(m,,x).

The proof of Lemma 4 is now obvious from (1), (2) and (3).
Proof of Theorem 3. First we make a construction. Let {x,. ,x}

be a pre-basis of X, and let x*, ..., x* be indeterminates. We define
a u-quadratic form (2",/*) on the free module x*R@...x*R as fol-
lows" *(x**, x) =2(x,, x), p*(x*)--p(x,). The u-quadratic form (x*R
3...3x*R,*,/*) is denoted by X*. The canonical map p*" X*X
defined by p*(x*)=x, is clearly an S-isometry. We call a pair (X*, p*)
a free core of X, or, {x, ..., x}-free core of X. See [4].

Now the proof of the ’if’ part of Theorem 3 goes as follows. Sup-
pose Y is stably null-cobordant. Let (X*,p*) be a free core of X.
Then since 9op* :X*-.Y is an S-isometry and X* is a free u-form, X*
is stably null-cobordant by Lemma 4. Therefore X is stably null-
cobordant by applying the ’only if’ part of Theorem 3 to the S-isometry

p*" X*-.X. This completes the proof.

4. A cancellation theorem. We continue to fix an onto homo-
morphism h" R-S. Let X=(M, 2,12), Y=(N, , ) be S-nonsingular

u-forms.
Cancellation theorem. Suppose X_Y and Y are stably null-
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cobordant, then X is also stably null-cobordant.
We need a lemma due to Cappell-Shaneson [2].
Lemma 5. Let Y=(N,,]) be a stably null-cobordant u-form,

then there exists a diagram of S-isometries K< ->Y in which
K is a kernel.

Proof. We may assume that Y is actually null-cobordant. Let
HNbe a pre-subkernel of Y. One can choose a pre-basis
..,fr}N so that {el, ..., er}H. Define (Y*,p*) as an {e, ..-, e,
., f}-ree core of Y. Let K= J_[=l S, where St=(xRyR,,) is

a standard plane. Then an S-isometry ?: Y*K is explicitly defined
as follows:

p(e* )-- , x(e,f),
and

?(f* )--y +x+, x(f,f),
where c =_ ](f) mod {a-aula e R}.

Proof of cancellation theorem. By Lemma 5, we have S-isome-

tries K( Y*
p* .Y in which K is a kernel. By making orthogonal

sums we have a diagram o S-isometries X_K--X_[_Y*-XJ_Y, but
X_Y is stably null-cobordant by the hypothesis. Therefore, by
Theorem 3, X_K is stably null-cobordant. This completes the proof.
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