153. On Exceptional Linear Combinations of Entire Functions

By Masakimi KATO Department for Liberal Art, Shizuoka University (Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1973)

1. Introduction.

As an interesting result with respect to the relations between the sum of deficiencies and the number of Picard's exceptional values of entire algebroid functions, K. Niino and M. Ozawa [3], M. Ozawa [5] and T. Suzuki [6] showed the following fact: Let f(z) be a transcendental entire algebroid function defined by an irreducible equation

 $F(z, f) \equiv f^n + A_1(z)f^{n-1} + \cdots + A_n(z) = 0,$

where A_1, \dots, A_n are entire functions and n=3, 4, 5. Let $\{a_j\}_{j=0}^n$ be distinct finite numbers such that arbitrary n-1 functions of $\{F(z, a_j)\}_{j=0}^n$ are linearly independent and

$$\sum_{j=0}^{n} \delta(a_{j}, f) + \sum_{\nu=1}^{n-3} \delta(a_{j\nu}, f) > 2n-3$$

for all n-3 numbers $\{a_{j\nu}\}_{\nu=1}^{n-3}$ of $\{a_j\}_{j=0}^n$. Then there exists at least one Picard's exceptional value in $\{a_j\}_{j=0}^n$. Moreover J. Noguchi [4] showed that this result is available for all $n \ge 2$ and in the case of n=5, he obtained a better result.

In this note, we will discuss the case of transcendental system of entire functions and give an extension of the above fact. In the proof of Theorem 1, methods of J. Noguchi are used.

The author is grateful to Professor N. Toda for suggesting the above problems and his valuable advices.

2. Preliminaries.

Let f_0, \dots, f_l be entire functions and $X = \{F_i\}_{i=0}^N (l \leq N \leq \infty)$ a set of linear combinations of f_0, \dots, f_l with constant coefficients. We say that X is a regular family of linear combinations of f_0, \dots, f_l when the matrices of the coefficients $(a_{i_n l})_{j=0}^{n=0,\dots,l}$ are regular for all l+1 integers $\{i_n\}_{n=0}^l (0 \leq i_n \leq N)$. And we say that the elements $\{G_k\}_{k=1}^p$ in X form a basis of X if and only if G_1, \dots, G_p are linearly independent and all of X can be represented as linear combinations of G_1, \dots, G_p .

Let $f=(f_0, \dots, f_n)$ $(n \ge 1)$ be a transcendental system in $|z| < \infty$. Namely f_0, \dots, f_n are entire functions without common zero and $\lim_{r \to \infty} T(r, f)/\log r = \infty$, where T(r, f) is the characteristic function of f defined by Cartan [1], i.e. $u(re^{i\theta}) = \max_{0 \le j \le n} \log |f_j(re^{i\theta})|$ and T(r, f) $=\frac{1}{2\pi}\int_{0}^{2\pi}u(re^{i\theta})d\theta-u(0).$ Moreover the deficiency of linear combination

F is defined by $\delta(F) = 1 - \limsup_{r \to \infty} \frac{N(r, 0, F)}{T(r, f)}$.

Lemma 1. Let $X = \{F\}$ be a regular family of linear combinations of f_0, \dots, f_n which are linearly independent, then we have

$$\sum_{F \in X} \delta(F) \leq n+1$$

(Cartan [1]).

Lemma 2. Let $X = \{F_i\}_{i=0}^N$ be a regular family of linear combinations of f_0, \dots, f_n and $\{G_k\}_{k=1}^l \ (l \leq N+1 \leq \infty)$ a basis of X. Then we have

$$T(r, f) = \frac{1}{2\pi} \int_{0}^{2\pi} \max_{1 \le k \le l} \{ \log |G_k(re^{i\theta})| \} d\theta + O(1).$$

This result follows at once from the definitions of regular family and T(r, f).

Lemma 3. Let F_1, \dots, F_l be linearly independent entire functions in X and put $F = F_1 + \dots + F_l$. Then we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} \max_{1 \le j \le l} \{ \log^+ |F_j(re^{i\theta})| \} d\theta \le \sum_{j=1}^l N(r, 0, F_j) + m(r, F) + S(r),$$

where $S(r)=O(\log T(r, f)+\log r)$ as $r\to\infty$ possibly outside a set of r of finite linear measure when the order of T(r, f) is infinite (Nevanlinna [2]).

Proof. By $F_1 + \cdots + F_l = F$ and $F_1^{(\mu)} + \cdots + F_l^{(\mu)} = F^{(\mu)}$ for $\mu \ge 1$, we have

$$F_j = \frac{\Delta_j}{\Delta}, \qquad j = 1, \cdots, l,$$

where, using the Wronskian $W(F_1, \dots, F_l)$ of F_1, \dots, F_l , $\Delta = W(F_1, \dots, F_l)/F_1 \dots F_l \quad (\not\equiv 0)$

and

$$\Delta_{j} = W(F_{1}, \cdots, F_{j-1}, F, F_{j+1}, \cdots, F_{l}) / F_{1} \cdots F_{j-1} F_{j+1} \cdots F_{l},$$

$$j = 1, \cdots, l.$$

Put $\Delta_i = F \tilde{\Delta}_i$, then we have

$$egin{aligned} \max_{1\leq j\leq l} \left\{ \log^+ |F_j|
ight\} &\leq \max_{1\leq j\leq l} \left\{ \log^+ |F| + \log^+ | ilde{\mathcal{A}}_j| + \log^+ \left| rac{1}{\mathcal{A}}
ight|
ight\} \ &\leq \sum_{j=1}^l \log^+ | ilde{\mathcal{A}}_j| + \log^+ |F| + \log^+ \left| rac{1}{\mathcal{A}}
ight|. \end{aligned}$$

Hence,

$$\begin{split} \frac{1}{2\pi} \int_{0}^{2\pi} \max_{1 \leq j \leq l} \left\{ \log^{+} |F_{j}(re^{i\theta})| \right\} d\theta &\leq \sum_{j=1}^{l} m(r, \tilde{\mathcal{A}}_{j}) + m(r, F) + T\left(r, \frac{1}{\mathcal{A}}\right) \\ &= \sum_{j=1}^{l} m(r, \tilde{\mathcal{A}}_{j}) + m(r, F) + m(r, \mathcal{A}) + N(r, \mathcal{A}) + O(1). \end{split}$$

М. КАТО

On the other hand, we see $N(r, \Delta) \leq \sum_{j=1}^{l} N(r, 0, F_j)$ because $F_1 \cdots F_l \Delta$ is entire. In the same method used by Cartan to estimate an error term in the proof of the fundamental theorem ([1], p. 12–p. 15), we have $\sum_{j=1}^{l} m(r, \tilde{\Delta}_j) + m(r, \Delta) = S(r)$. Thus we have the desired result.

3. Exceptional linear combinations.

Theorem 1. Let F, F_0, \dots, F_n be a regular family of linear combinations of f_0, \dots, f_n and F_0, \dots, F_n satisfy the following conditions:

(i) Arbitrary n-1 functions in $\{F_j\}_{j=0}^n$ are linearly independent.

(ii)
$$\sum_{j=0}^{n} \delta(F_j) + \sum_{\nu=1}^{n-3} \delta(F_{j\nu}) > 2n - 3 + 2\xi$$

for all n-3 functions $\{F_{j_{\nu}}\}_{\nu=1}^{n-3}$ in $\{F_{j}\}_{j=0}^{n}$. Then there exists a function $F_{j_{0}}$ in $\{F_{j}\}_{j=0}^{n}$ such that $\alpha F_{j_{0}}=F$, where α is non-zero constant and

$$\xi = \limsup_{r \to \infty} \frac{m(r, F)}{T(r, f)} \qquad \Big(0 \leq \xi < \frac{1}{2} \Big).$$

Proof. Let λ be the number of distinct non-trivial linear relations among f_0, \dots, f_n . Then condition (i) implies $0 \leq \lambda \leq 2$. We shall show that in this case λ is equal to 1 in the following.

If $\lambda = 0$, then F_0, \dots, F_n are linearly independent. By the definition of regular family, we can see easily

 $a_0F_0 + \cdots + a_nF_n = F$, $a_j \neq 0$ $(j=0, \cdots, n)$. So we have by Lemma 2 and Lemma 3,

$$T(r, f) \leq \sum_{j=0}^{n} N(r, 0, F_j) + m(r, F) + S(r).$$

Hence

$$\sum_{j=0}^n \delta(F_j) \leq n + \xi.$$

This is a contradiction.

If $\lambda=2$, there exist n-1 functions in $\{F_j\}_{j=0}^n$ that form a basis of $\{F_j\}_{j=0}^n$. Let, for example, $\{F_0, \dots, F_{n-2}\}$ be the basis, then each of $\{F_0, \dots, F_{n-2}, F_{n-1}\}$ and $\{F_0, \dots, F_{n-2}, F_n\}$ is a regular family of linear combinations of $\{F_0, \dots, F_{n-2}\}$ because of the condition (i). By Lemma 1,

$$\sum_{j=0}^{n-1} \delta(F_j) \leq n-1.$$

This leads also to a contradiction. Thus we have $\lambda = 1$.

Suppose that any *n* functions in $\{F_j\}_{j=0}^n$ are linearly independent. Since $\lambda = 1$, there exist *n* functions in $\{F_j\}_{j=0}^n$ that form a basis of $\{F_j\}_{j=0}^n$. Let, for example, $F_{i_0}, \dots, F_{i_{n-1}}$ be the basis, we can write

$$F_{i_n} = a_0 F_{i_0} + \cdots + a_{n-1} F_{i_{n-1}}, \qquad a_j \neq 0 \ (j = 0, \dots, n-1)$$

by our assumption. Hence $\{F_j\}_{j=0}^n$ is a regular family of linear combi-
nation of $F_{i_0}, \dots, F_{i_{n-1}}$. So similarly in the above, we have

702

No. 9]

$$\sum_{j=0}^n \delta(F_j) \leq n$$

This is a contradiction.

Now we may assume that F_0, \dots, F_{n-1} are linearly dependent;

(1)
$$\sum_{j=0}^{n-1} \beta_j F_j = 0, \quad \beta_j \neq 0 \ (j=0, \dots, n-1)$$

by the condition (i). Since $\lambda = 1$, *n* functions of $\{F_j\}_{j=0}^n$ one of which is F_n , are linearly independent and form a basis. By our assumption of regular family, we have

(2) $a_0F_0+\cdots+a_nF_n=F, \quad a_j\neq 0 \ (j=0,\cdots,n).$ Set $\beta_0=a_0$ and from (1) and (2), we obtain

$$(a_1-\beta_1)F_1+\cdots+(a_{n-1}-\beta_{n-1})F_{n-1}+a_nF_n=F.$$

Hence we have

(3)

$$lpha_1F_1+\cdots+lpha_nF_n=F, \qquad lpha_n
eq 0.$$

If all $\alpha_j \neq 0$, since F_1, \dots, F_n form a basis of $\{F_j\}_{j=0}^n$, using Lemma 2 and Lemma 3, we obtain

$$\sum_{j=1}^n \delta(F_j) \leq n - 1 + \xi,$$

and this is a contradiction. Thus we may set $\alpha_1=0$. Moreover we will show that $\alpha_2, \dots, \alpha_{n-1}$ are zero.

Assume that non-zero elements of $\{\alpha_2, \dots, \alpha_{n-1}\}$ are $\alpha_k, \dots \alpha_{n-1}$, $2 \leq k \leq n-1$. The equation (3) is reduced to

(4)
$$\alpha_k F_k + \cdots + \alpha_n F_n = F$$
 $(\alpha_j \neq 0).$
Set $\beta_k = \alpha_k$ and from (1) and (4), we have
 $-\beta_0 F_0 - \cdots - \beta_{k-1} F_{k-1} + (\alpha_{k+1} - \beta_{k+1}) F_{k+1} + \cdots + (\alpha_{n-1} - \beta_{n-1}) F_{n-1} + \alpha_n F_n$
 $= F.$

Since $F_0, \dots, F_{k-1}, F_{k+1}, \dots, F_n$ form a basis of $\{F_j\}_{j=0}^n$, one of their coefficients is zero by Lemma 2 and Lemma 3 similarly. Let $\alpha_{k+1} - \beta_{k+1} = 0$ and we have

(5)
$$-\beta_0 F_0 - \cdots - \beta_{k-1} F_{k-1} + (\alpha_{k+2} - \beta_{k+2}) F_{k+2} + \cdots + (\alpha_{n-1} - \beta_{n-1}) F_{n-1} + \alpha_n F_n = F.$$

Let $\{F_{j\nu}\}_{\nu=1}^{l}$ be the functions of $\{F_{j}\}_{j=0}^{n}$ which appear with non-zero coefficients in both equations (4) and (5). Then $1 \leq l \leq n-k-1 \leq n-3$. Applying Lemma 2 and Lemma 3 to the equations (4) and (5), we have

$$T(r, f) \leq \sum_{j=0}^{n} N(r, 0, F_j) + \sum_{\nu=1}^{l} N(r, 0, F_{j\nu}) + 2m(r, F) + S(r),$$

so that

$$\sum_{j=0}^n \delta(F_j) + \sum_{\nu=1}^l \delta(F_{j\nu}) \leq n + l + 2\xi.$$

Let $\{F_{j\nu}\}_{\nu=l+1}^{n-3}$ be any n-l-3 numbers of $\{F_j\}_{j=0}^n - \{F_{j\nu}\}_{\nu=1}^l$, then

$$\sum_{j=0}^{n} \delta(F_{j}) + \sum_{\nu=1}^{n-3} \delta(F_{j\nu}) \leq 2n - 3 + 2\xi.$$

This is a contradiction. That is to say we have $\alpha_n F_n = F$. Thus Theorem 1 follows.

Remark. If F is a exceptional linear combination in the sense of Picard (resp. lacunary), then F_{j_0} is also exceptional linear combination in the sense of Picard (resp. lacunary).

If especially $F \equiv 1$, then we obtain the result of J. Noguchi in the introduction.

In the case of n=5, we obtain a slightly better following theorem Theorem 2. Let F, F_0, \dots, F_5 be a regular family of linear combi-

nations of $f_0, \dots f_5$ and F_0, \dots, F_5 satisfy the following conditions:

(i) Arbitrary four functions of $\{F\}_{j=0}^5$ are linearly independent.

(ii)
$$\sum_{k=0}^{\infty} \delta(F_j) + \delta(F_k) > 6 + 2\xi$$
 for all F_k .

Then there exists a function F_{j_0} in $\{F\}_{j=0}^5$ such that $\alpha F_{j_0} = F$, where α is non-zero constant and ξ is the same value defined in Theorem 1.

We obtain easily the above result by considering Theorem 1 in relation to Theorem 2 in [4].

References

- H. Cartan: Sur les zéros des combinaisons linéaires de p fonctions holomorphes données. Mathematica, 7, 5-31 (1933).
- [2] R. Nevanlinna: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthier-Villars, Paris (1929).
- [3] K. Niino and M. Ozawa: Deficiencies of an entire algebroid function. Kōdai Math. Sem. Rep., 22, 98-113 (1970).
- [4] J. Noguchi: On the deficiencies and the existence of Picard's exceptional values of entire algebroid functions (to appear).
- [5] M. Ozawa: Deficiencies of an entire algebroid function. III. Kōdai Math. Sem. Rep., 23, 486-492 (1971).
- [6] T. Suzuki: On deficiencies of an entire algebroid function. Kodai Math. Sem. Rep., 24, 62-74 (1972).