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1. Introduction and Theorem.
The purpose of this note is to prove a limit theorem of the average

powers of the gaussian white noise, which is a generalization of the
Brownian oscillation due,to P. Lvy [3; 41].

P. Lvy developed extensively Gteaux’s constructive study of the
gaussian white noise in his book [2]. In his original idea the choice of
the complete orthonormal system () in the real Hilbert space L2[0, 1]
plays important roles, however there seems to be no other result
depending on the choice of the system (). Our theorem stated below
does depend on the choice of the ,system

Now, we shall introduce the measure of gaussian white noise. Let
E be a nuclear subspace of the real Hilbert space L2[0, 1] which is
dense in the space L[0, 1] and satisfies the relation

EL2[O, 1]E*,
where E* stands or the dual space of E. For the characteristic
unctional

C()-exp

IIll being the L"[0, 1]-norm of E, there corresponds a probability
measure Z on E* such that,

where (z, ), z e N*, N is the canonical bilinear form which links
the spaces N and N* We call the measure of gaussian white noise
(see . Hida [1]).

Next we define the average owe {0(z) z N*} for a complete
orthonormal system {} in L[O, 1] as follows;

1 (z,.),

where is a bounded measurable function on the interval [0, 1].
he system {} is called weal eqall gee, if it satisfies

)lim (u) 1 (u)_l du-O,

or any bounded measurable unction V on [0, 1].
Theorem. Le$ {}= be a complete orShonormal system. Then
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/(x e E* limpx(x)=l’(u)du)=l
holds for any bounded measurable function , if and only if the system
{}__ is weakly equally dense.

2. Proof of the theorem.
Noting that a random variable (x,]) is subject to the normal

distribution N(0, II]l[) by the definition of the measure p, we can prove
the following three formulas (1), (2) and (3).

(1) E[p]= (u) (u)du.

(2)

where

E[Ip(x) E[px] ] (u)(v)q(u, v)dudv
LJOJO

"2F 2(U1)2(U2)2(U3)2(U4).N(U1, U2).N(Ul, U3)
dOdOJOdO

(u, u)(u, u)dudududu,

(u, v) =--- .= .(u).(v).

( 3 ) (u, v)dudv =--, N 1, 2, 3, ....
Although the proof of this formula is immediate, it is essential in our
theory.

Now we shall prove our theorem. First we estimate each term in
the right side of (2). Since is bounded,

say [(u) l_<_M,
the formula (3) implies

[i i12 0(u)(v)(u’ v)dudv <= N---,
and

We therefore have the ollowing basic estimates"

< 60M
E[Ipx(x)--E[px]]’]=--i--, N=1,2,3, ....
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Hence by the Tychebycheff’s inequality we have for any positive num-
ber ,

Z(x e E* IpN(x)--E[py]l>)--60M
e4N2

Since
60M

.N’=I

the Borel-Cantelli’s lemma can be applied to show that
lim (pv(x)--E[p]):O, for a.e. x e E*.

If, in particular, the system {} is weakly equally dense, we have

( 4 ) lim E[p]--lim 2(u) (u)du: 2(u)du,

which implies

lim pv(x)--[(u)du :[or a.e. x e E*.
J0

The converse statement is obvious from the equality (4).
pletes the proof of our theorem.
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