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1. Introduction. Very recently, Ifantis and Kouris [1] show, a
Hilbert space approach is powerful to give bounds o roots o algebraic
equations; actually, they show that the operator bound of a perturba-
tion of the simple unilateral shit by a dyad gives certain bounds o
roots. In the present note, giving three norms on n-dimensional vector
space, we shall obtain certain bounds o roots estimating operator
norms oi companion matrices.

For a given algebraic equation

( 1 p(Z)--Zn--anzn-l- +a:O,
we associate the companion matrix

1 0 0 0 o|
(2) T-- 0 1 0 0 0 |,

o0 0 0

cf. [2], esp. Chapter VII. It is well-known that the spectrum a(T) of
T coincides with the set of all roots of (1), i.e.

(3)
From (3), we have

a(T) {z p(z)-- 0}.

( 4

2or any root z of (1), where r(T) is the spectral radius of T" r(T)
-----SUpze(r) ]zl and T is the operator norm o T" IITll--supllfll= IITfll
considering T as an operator on the n-dimensional Banach space H.

2. Carmichael.Mason’s theorem. Here we regard H as the n-
dimensional unitary space with orthonormal basis e,..., e. For x,
y e H, we put (x(R)y)z--(z, y)x for z e H. Then we can express the com-
panion matrix T of (1) as

( 5 ) T-- V-- e(R)u,

where

(6)
and

u=a*el +... +a* en
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(7)

(8)

(9)
Proof.

have

0 0 0 0 0
,0 0 0

V-- 1 0 0

0 0 1
Theorem 1. If z is a root of (1), then

Proof. We have

i=1

i=l

<+Zlal.
i=1

Hence we have (8) by (4).
Theorem 2 (Carmiehael-Mason). If z is a root of (1), then

Iz[=<( +[a,[+ +[a. I)/.
Since V*e=0, we have V*(e(R)u)=V*e(R)u=O. Hence we

TI]-- T*T[[---[[(V--e(R)u)*(V--e(R)u)[[
=1[ V*V+u(R)ull <ll V’Vii+
__<+]lull.

Since u]]= ]a.l +... +la, , we have (9) by (4).
3. Montel’sandEnestrm,Kakeya’sTheorem. We shallreplaee

the norm of H by the sup-norm"

(10), [f=max {ILl, "",

for f= (f, ..., fn) e H.
Theorem 3 (Montel). If z is a root of (1), then

(11) [z[max (1, [a[+... +[a[}.
Proof. For a matrix X=(x), we have

[[Xl[=max [x[.
lin j=l

Therefore, we have (11) by (4).
Theorem 4 (Montel). If z is a root of (1), then

(12) ]z[[ai[ + [ai-a[ +
Proof, Put q(z)=(1-z)p(z). Apply Theorem 3 for q(z). Since

the right hand side of (12) is not less than 1, we have (12) by (11).
It is known that Theorem 4 implies the following well-known

theorem"
Theorem 5 (EnestrSm-Kakeya). If z is a root of

bozn + bzn- + + bn :O,
where

bob.. bnO,
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then
4. Cauchy’s theorem. If we replace the norm of B by

(13) [If[[-[f[+’’’
for f=(f,..., fn), then we have another bound for roots of (1)"

Theorem 6 (Cauchy) If z is a root of (1), then
(14) ]z]=<l +max

Proof. It is sufficient to show that T I[ is not greater than the
right hand side of (14). For any f e H, we have

i=l i=l

5. Operator coecients. In the reeeding sections, we have
calculated bounds for roots of equations with numerical eoeeients.
In this section, we shall give bounds for roots of equations with oer-
ator eoeNeients. Similar equations are considered, as a generalization
of the classical proervalue roblem, by Atkinson, S.-Nagy, filler
and others, el. [g].

Let us suppose that
V(z)--z +zn-lVn + +zV2+ V1

where V,..., Vn are (bounded linear) operators on a Hilbert space K.
The (operator) companion matrix of V(z) is

V
I

V- 0

0 0 0
Let H be the direct sum of n copies of K.

-:. V

0

I
We shall consider V as a

linear operator on H. A complex number z is called a root of V(z) if
there is a non-zero x e K such that
(15) V(z)x-O.
As in the case of numerical coefficients, we have

Lemma 7. The set of all roots of (15) is the point spectrum ap(V)
of V.

Proof. If z e a(V), then Vx--zx for some non-zero x-(x,...,
x) e H. Hence we have

Vnx- Vn_x V.xn_- VXn ZX
X ZX

(16) x2 =zx3

Xn ZXn
From (16), we have x,:/:0 and V(z)x,-O, that is, z is a root of (15).

Conversely, if V(z)xo=O for x00, then we have a non-zero vector
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x e K by (16) putting x--Xo and x=(x,...,x). Clearly, x satisfies
Vx--zx, and z e ae(V).

By Lemma 7, corresponding to (4), we have
(4’) Izl=< r(v) _-<ll vii,
or any root z of (15). Hence, we can give a bound or roots of (15)
estimating VII.

For example, if we give a norm of H by
(17) IIfll-mx{llAll,’",llll} for f--- fl’"A,
then we have following theorem corresponding to Montel’s theorem"

Theorem 8. If z is a root of (15), then
(18) IzI__<max {1, Yl[+ +l[ V[[}.

Proo. For any x e H such that x l[_<_ 1, we have

]] ____< maxVx
i=l

__<max {1,[[V[]+...
Hence, by (4’), we have (18).

Corresponding to Theorem 4, we have
Theorem 9. If z is a root of (15), Shen

(19) [zl<=llVll/llV-V211/. /llV_-Vll/llV-Ill,
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