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175. Index Theorem [or a Maximally Overdetermined
System of Linear Differential Equations
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Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko KODAIRA, M..1. A., Dec. 12, 1973)

In this note we state the index theorem for a maximally over-
determined system of linear partial differential equations. The
theorem comprises as a special case the already known index theorem
for an ordinary differential equation (Kashiwara [2], Komatsu [4] and
Malgrange [5]).

1. Local characteristic. Let (S,x)be a germ o an irreducible
analytic space. We define the local characteristic c(S) by the induc-
tion on the dimension of S as follows.

We embed (S, x) into an enclidean space (C, 0) and choose a
Whitney stratification S-- [3 S of S. The open stratum of S is denoted
by So. Let d be the dimension of S and x be a point in S. We
define c(S) inductively by the following formula

cAS) cAS)z(uo So z.)
SaSo

where U denotes a sufficiently small open ball with center x, Z
denotes a (d+ 1)-codimensional linear variety in a generic position in
C sufficiently close to x, X denotes the Euler characteristic and the
sum extends over all the strata S other than So.

Proposition. The definition of a local characteristic cx(S) is inde-
pendent of the choice of the embedding (S,x)(C,O) and the
stratification.
We will give the expamples of local characteristics.

Example 1. I (S, x) is non singular, then c(S)-1.
Example 2. If (S, x)is a hypersurface in C/ with the isolated

singularity at x, then c(S)- 1 + (- 1)-/ where/ is the Milnor number
of the generic hyperplane section of S through the point x. In
particular, for S-(xeC /;x0+...+x=0}, we have co(S)--1
+ (-- 1)-(p 1)... (p-- 1) with P0--maxp

Example 3. If (S,x) is a curve, then c(S) coincides with the
multiplicity of S at x.

Example 4. If S={(x, y, z) e C; xn + yPzq--O} (g. c. d. (p, q, n)- 1
and p, q, n>l), then c0(S)-min (n, p) +min (n, q)-n.

2. Index theorem. Let X be a complex manifold, (9 be the sheaf
of holomorphic functions on X, _q) be the sheaf of differential operators
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of finite order on X and /be a system of differential equations, that
is, a coherent left _q)-Module (as for the notations we refer the reader
to Sato-Kawai-Kashiwara [1], Kashiwara [2], [3]).

Let /= [J be a good filtration of /, namely, a filtration by
such coherent G-Modules / that one has //+ for any l, k
and t/=// for k}}0 with _q) denoting the sheaf of differential

operators of order <=l. SS(I) is the support of the coherent sheaf
grtt on T*X associated with grg--(/i_). For an irreducible
analytic subset A in T’X, the multiplicity of /at A is by the definition

the multiplicity of gr- at A. These notions are independent of the
choice of the good filtration.

We assume that / is maximally overdetermined. This means

the dimension of SS(2tt) equals to that of X.
By definition the index Z(/) of /at a point x of X is given by

(/)- (-- 1) dimct (/,

SS(I) is expressed as union

SS(I) T*,X
in a neighborhood of x where Y. is a non singular locus of an analytic
subset Y o X irreducible at x. This expression is unique.

Theorem. ;()---- (--1)c(Y)m
where d is the codimension of Y and m is the multiplicity of at
T*,X.

This theorem is derived from the structure theorem for a
maximally overdetermined system of pseudo-differential equations and
the study of the sheaf 6’)(/, (C)) (see [3]).
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