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11. Note on Some Whitehead Products

By Yasutoshi NOMURA
College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

1. Introduction. For standard generators ¢ € z,(S") the problem
whether Whitehead products [6, ¢,] are 0 or not has been investigated
by various authors [1],[2], [7], [8]. In this note we are concerned with
the question whether [4, ¢,] € 0,7, ,,_,(S9) or not. Following the Toda
notation [13] our main result is stated as follows.

Theorem. [6,¢,] does mot lie in the image of 6,:my,q,(SY
=7y ,q-1(8™) for the following 0:

72y m=0,1mod 4 and n=5; 7}, n=0 mod 4; v,,n=1,3 mod 8 and n
=9 or n=0mod 2 and n=6; 13, n=2 mod 4 and n=6; ¢,,n=1 mod 4
andn=13 or n=0 mod 2 and n=10; 8¢,,n=2 mod 4 and n=10;¢,,n
=1 mod 4 and n=13; 5,, n=1 mod 4 and n=13; p,, n=1 mod 4 and
n=213; pp,m=1mod 4 and n=21; k,, n=1 mod 4 and n=21; w,, n=1
mod 4 and n=21; g,,n=1mod 4 and n=21;¢{,,n=0 mod 2 and n=6;
En,n=1mod 4 and n=25 or n=0mod 2 and n=8; &,,n=0 mod 2 and
n=6; v, n=0mod2and n=18; 9,0,.,n=0,1mod 4 and n=12; p,pn 1> 1
=0mod 4 andn=12; 9,0,,, n=0,1 mod 4 and 1220 ; 5,9¥.,, n=0 mod 4
and n=24; p,f,,,, n=0mod 4 and n=24.

Consequently, from a theorem of James [4] we may deduce

Corollary. There exist no Poincaré complexes of the form
(S”Lijeq“) Uertatl where 0 are elements exhibited in Theorem.

2. Special cases of Toda’s propositions. Some of the following
lemmas are obtained as corollaries of Propositions 11.10 and 11.11 of
Toda [18], but proofs may be given which are based on the results of
James [3], Kervaire [6] and Paechter [12].

Lemma 2.1. For n=0mod 4,n=4, there exists t,_; € mpy_,(S™™)
such that Ec,_,=[y,, ] and H(z,_)=25,_s

Remark. This is obtained from Proposition 11.10, i) of [13] for
a=17y,_,. According to [13],[10] we may take t,=1'p, 7,=0"p1, T =6,
r,=7* mod Er,(S") and r,,=p.

Proof. Introduce the diagram
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Ton_o(S"7?) == my, (8”79
I [
J E?
”n(Rn—l) —_— ﬂzn-l(sn_l) — ﬂzn+1(Sn+l)

31 \ H1 H3
k
r 2
7Tn+1(Rn+u Rn_x)“‘a—>ﬂ'n(Rn—u Rn—z)‘—"')ﬂ'n(Rnn’ Rn—z)——”z'n(Rnn’ R'n—l)
2

I l I
7,(S"7%) ﬂn(Vn+1,3):Z2 ”n(VnH,Z):ZZ
_’nn—I(Sn—z)"’ﬂ'n—l(vn+1,3)_’7tn—1(Vn+1,2)
Z2c|>|rZ ZJLrZ ZZOHI‘O

in which row and columns are exact and the diagram commutes up to
sign by James [38]. The values of homotopy groups of Stiefel manifolds
are taken from Paechter [12]. We see that j is bijective, hence we
may find t € z, (R, R,_)) With 8,t=2%_,. Since H,E*Jo,t=0, there is
at' € my,_,(S*? with E°t' =E%Jo,t. Since E': 7,,_,(S* ) —7r,,(S™) is monic
by [9% 15 ¢n_11=0, it follows that z,_,=Jo,t—Et’ is what we wanted.

We now see from the well known information of vector fields on
spheres that, if we write n+1=m.2°-16¢ where m is odd=3 and
0=<c=3 then there exists <%}, e, ,(S"**"), p=2°+8d, such that
[tn, tal=Ee~'2= 0, and H(z{¢-2)#0 in @, ,(S™%*!). Special cases of
this fact are needed in the sequel.

Consider the bundles U, ,,—S**! and Sp,,,—S*** with characteris-
tic classes 75, € 73, (UL)s 74h+2 € Tun.2(SD,).  In the light of the results of
éguchi [11] and James-Whitehead [5] we may take for z{% € r,,(S**) and
3 € 13,,,(S*™) (n: even) the images under Hopf-Whitehead homomor-
phisms.

Lemma 2.2. For n even, 5 is of order 2 and Etl) =1ty .15 tan 1)
H(T&)):mn—l-

Remark. This lemma is related to Proposition 11.10, ii) of [13]
with a=¢,_,. According to [13,10], we may take (" =y, t{* =0
+ Tyt &, o =0, o =k + w0y Mod 7144155, -:53):‘73. Note that r,,(R,,)=(Z,)?
or (Z,) by [6].

Lemma 2.3. For n even, Bt =1t tinss] ond H(@E)=7vg_y,
where r=+1, +3.

Remark. According to [13], [9] we may take ¢ =0y, o0 =v¥
+ &6 Lass L] = BP0,

Lemma 2.4, Forn=0mod4,n=4, 7, ,;(Up_) =720.5(Ur)s Ton1s(Uy)
18 cyclic with generator yy,v., and my, (U, 1) is generated by ug,l, whose
image under the J-homomorphism is denoted by 7,,_,€ my,(S™9).
Then E*zy,_y=[vsn 15 tan 4] aNA H(ZTyy_p) =3, 5.
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3. Proof of Theorem.

Proposition 3.1. Suppose that Be m,(S**') satisfies pi,_(E**~*p)
#0, where q=8k—4. If E*:rny4u_sST)>mex(8S) ¢s epic (e.g.,
q=4k+2), then (7485 tar] & 774lc.377q+47a-1(sq)o

Proof. We may write g=Ef. By Lemma 2.1, [5.:8, tul
= [, ] E* ' = E (z4_, B**"28).  Assume that FE(z,_,E**p)
=K@y, F(Fa)). Then, since the kernel of E': zy, 4 (S* ) —mq 4r-1(S*)
coincides with [z, (S**"), ¢,;_,], we have

Tae 1 B* 2 B=04 B (B'0) + [ty 15 i JE** 77, 7 € 0 (S**77).
By taking the Hopf invariant of both sides, we have a contradiction
7o) =O0.

Proposition 3.2. Suppose that 6ex,(S**') satisfies . E**7'6
€ 2y xS (e.9. 9e_ E**7'0£0 and the order of each element of
Tooan-1(S*7Y) equals 2 or is prime to that of 6), where q<8k—2. If
E*: 78T >y (8D s epic (e.g. q=4k+3), then [0, ¢p,]
€ O, (SD.

Proof. Assumethat[6, ¢, ]=0E"x, a € m,,4_,(S*". Since [0, ¢441]
=[tip 115 b JE*0=E (D E**'4) by Lemma 2.2 and since the kernel of
E: 7wy 1(S*) >, (S is generated by [r,(S*),,], we have, for §
with E?9=6,

tRE*0=FEBc) + [t41» ) By, 7 € Tgpap—a(S*79).
Taking the Hopf invariant of both sides yields gy _,E** 16 € 2ry 45 _,(S*7Y),
which contradicts our assumption.

Proposition 3.3. Suppose Ef € z,(S™) satisfies 2E"'9+0, where n
18 even and q=n+1. Then [EF,c,] e (E6) .y, q-1(S).

Proof. Assume [EY,:,] = (Efa; then o« =FEo for some o
€ Ty, q—2(ST™Y). Taking the Hopf invariant, we get 2E"14=0.

Proposition 3.4. Letn=2mod4,n=6. Theni,c,] & iy, (S™*°).

Proof. By Proposition 11.11, ii) of Toda [13], there is a ¥,
€ T3 .5(S™?) such that [2,¢,]=FE%, and H(5,)=ey,_5. Assume that
12, ¢, ]=12 E%x, which implies that there is an integer « such that E?,
=EG2_,Ea)+2[0, 1,60 1=EG: _;Ea) + 3(Ec® )a,,_s by Lemma 2.2, It
follows that

D=V JFa+ 2t 00 s+ Y[Dn_sy tn_o] +2len_s» tnsl
for some integers ¥ and z. This leads to a contradiction e,,_;
= X102 = (Do 5+ Esn—5) Non—sT2n-s TOr n=10.

We now proceed to prove the theorem. Take f=¢;,, (k=3) in
Proposition 3.1. Since any element of =y _,(S**) is expressible as Ey
+ legry tar], we see that E?: zy,_(S*~)— g, (S**+Y) is epic. Thus the as-
sertion for [y, ¢.] (>2) follows. The case k=2 follows from the fact
that [y, ¢l =(Ed)p,; and po,=(Ed' )+ +¢. Applying Proposition 3.1
tO .B=774k+1 (kgz)’ Oyf 41 (kgg), Mak+1 (kgg): Oue+1 (kg5)’ 77:';:4-1 (kg6)9
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fuxsy (k=6) and observing relations g3 s=4vg s  Dhe_s0sk:
=”§k-3+778k-353k-2, 77gk—3ﬂ8k—1=4Csk—3’ 773k-3.°ek-1= Ol 378k + 448Kk + 59 7731:—3’732—1
=4v¥ 5, Pae—sfler—1=4Cs—3 the cases involving z,, are settled.

We may apply Proposition 3.2 by taking for 6 »;.,, (k=1), g,
(k=3), Nk +104k +2 (k=3), Dig i1 (B23), &gy (£=3), Har+1 (k=3), K1 (K25),
Paisr (B2D), Ok +1 (k=5), Nake +104k +2 (k=5), o, (=5, By (B26). Here
we note that pu_ ke = &u-1 @ 2751 (S* ™) = {200} + Zisy  Ysr-196x
=0Ogi-1/4sk+09 Voic—1flsk € 2Mar417(S™* ) = {20 _1}.

We shall show that [ve,., k1] € Vepriier+4 (S, k=1, Assume
[Weir1s loir) =Veesr@. Since [eg, ;] i of infinite order, we may write
a=F, o eme(S*). By Lemma 2.4, E’ty_,=FE%y,_.Fa’), and
i +5(S' ) =104 (S' 1) =0 gives

71'16k+1(SSk_z)i»ﬂ'mk+2(Sak_1)>£}‘»71'161c+3(S8k)>E‘>7fmIc+4(Ssk+l),
in which the kernel of the first £ is generated by [v3_., tsx-»], 80 that
we get Toy_,=vgi_ B +x[V3 s te_o]. This i3 a contradiction, because
the Hopf invariant of the right hand side is 0.

Next we show that [vs,s tsiis] @ Verysierrs (S0, k=1, Assume
that [vee,s foresl =Verss.  Since mg;,(S**%) is finite, E': mg,,(S¥*?)
— T, 5(S¥**%) is epic, hence a=FE'¢’. By Lemma 2.3, we have
E¥(cvi,0) =B Ba).  Since g, o (S *5) =m44,5(S¥**%)=0, it follows
that t@vier .. =ve B’ + Vi, ¢5]. By taking the Hopf invariant, a con-
tradiction arises.

Finally we show that, for n=2 mod 4, n=10, [8¢,,¢,] € 80,72, .,(S"*"),
which completes the proof of the theorem. By Proposition 11.11, (ii)
of Toda [13] there exists B e ,,.,(S""?) such that [8c,,,]=E"8, H(B
€ (Dan-sr 23n—1 80—}, 1€, H(B)=pian_s MOd 7y (S 7%).  Assume
that [8¢,, ¢,]1=E*8¢,_,Fa), @ € n,,,,(S***). Then

E,BEE(&M—ZE“) mod {[v,_y, tn_1l, [en_1, ‘n-l]}-
Since the indeterminacy is equal to {(E't$) )0y, _s, (Bt )e;n_s} by Lemma
2.2, we get
p=80,_Fa mod {TS)—zEﬂ'zn,»s(Sm"b), [tn_ss ‘n—z]”znn(Sm_b)}:
which leads to a contradiction in taking the Hopf invariant (Note that,
for n=10 ,,(S® =(Z,)®.

Added in proof. Using Proposition 11.10, i) of [13] we can show
that, for E’« € 7,(S™) of order 2 with 5,,_s(E"'a)#0, where n=0 mod 4,
n+2=<q<2n-—5, we have [E,c,] ¢ (E’0)n,.q-,(S). This may be ap-
plied to ¢, (n=16),5,(n=16), u, (n=16), k, (n=20) and g, (n=24).
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