10. Dimension of the Fixed Point Set of $Z_{p r-a c t i o n s}$

By Katsuo Kawakubo
Osaka University
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1974)

§ 1. Introduction. Concerning the dimension of the fixed point set of G-actions, much has been studied [3], [1], [2], [9], [10], [7], and [8]. In this note, we consider a $Z_{p r}$-action ($M^{n}, \phi, Z_{p r}$) on a closed oriented manifold M^{n} and study the relation between the bordism properties of M^{n} and the dimension of the fixed point set. If the action is regular, such a problem was studied in [8]. Here we are concerned with general $Z_{p r}$-actions.

In order to state the results, we introduce the following notations. Denote by Ω_{n} the Thom group of all bordism classes [M^{n}] of closed oriented smooth n-manifold M^{n}. Let $\Omega(4 j)$ be the subring of $\Omega_{*} \otimes Z_{p}$ generated by $\left\{\Omega_{0}, \Omega_{4}, \Omega_{8}, \cdots, \Omega_{4 j}\right\}$. Let $F\left(Z_{p r}, k\right)$ be the subring of $\Omega_{*} \otimes Z_{p}$ generated by those bordism classes which are represented by a manifold admitting a $Z_{p r}$-action such that the dimension of the fixed point set is less than or equal to k.

Then we have
Theorem. (1) $F\left(Z_{p r}, 4 k\right)=F\left(Z_{p r}, 4 k+1\right)=\Omega\left(4 k p^{r}+2 p^{r}-2\right)$
(2) $\quad F\left(Z_{p r}, 4 k+2\right)=F\left(Z_{p r}, 4 k+3\right)=\Omega\left(4 k p^{r}+4 p^{r}-4\right)$.

Remark. If $k=-1$, then Theorem means the main result of Conner-Floyd [4].

Corollary 1. Let $\left(M, Z_{p r}\right)$ be a $Z_{p r}$-action. If $[M]$ is indecomposable in $\Omega_{*} \otimes \boldsymbol{Z}_{p}$, then there exists a component of the fixed point set of dimension greater than or equal to

$$
\frac{\operatorname{dim} M}{p^{r}}-2
$$

Corollary 2. Each element $x \in \Omega_{m}$ has a representative which admits a $Z_{p r}$-action with fixed point set of dimension less than or equal to m / p^{r}.

Throughout this paper, p denotes an odd prime integer.
The results in this paper are oriented bordism versions of the excellent papers [5], [7] of tom Dieck.

Detailed proof will appear elsewhere.
§ 2. Outline of the proof. The following diagram is an oriented bordism version of tom Dieck [5],

where $G \Omega_{*}^{Z_{p r}}$ denotes the geometric bordism of oriented $Z_{p r}$-manifolds. Let $\Omega^{*}\left(B Z_{p r}\right) \xrightarrow{\pi} \Omega^{*}$ be the map induced by the map: one point $\rightarrow B Z_{p r}$ and $D: \Omega^{*} \rightarrow \Omega_{-*}$ be the Atiyah-Poincaré duality and $\pi^{\prime}: \Omega_{*} \rightarrow \Omega_{*} \otimes Z_{p}$ be the projection map. Then it is easy to see

Lemma 1. By the composition of the following maps

$$
G \Omega_{n}^{Z_{p r}} \xrightarrow{i} \Omega_{\bar{Z}_{p r}}^{-n} \xrightarrow{\alpha} \Omega^{-n}\left(B Z_{p r}\right) \xrightarrow{\pi} \Omega^{-n} \xrightarrow{D} \Omega_{n},
$$

[$M^{n}, \phi, Z_{p r}$] goes onto [M].
Let ξ_{∞} be the canonical complex line bundle over $\boldsymbol{C P}_{\infty}$ and let $\pi_{i}: C \boldsymbol{P}_{\infty} \times \boldsymbol{C} \boldsymbol{P}_{\infty} \rightarrow \boldsymbol{C} \boldsymbol{P}_{\infty}$ be the projection onto the i-th factor, $i=1,2$. If we denote the cobordism Euler class $e\left(\xi_{\infty}\right)$ by T, we have

$$
\Omega^{*}\left(\boldsymbol{C} \boldsymbol{P}_{\infty}\right) \cong \Omega^{*}[[T]]
$$

and

$$
\Omega^{*}\left(\boldsymbol{C P}_{\infty} \times \boldsymbol{C P}_{\infty}\right) \cong \Omega^{*}\left[\left[T_{1}, T_{2}\right]\right]
$$

where $T_{i}=\pi_{i}^{*}(T)$. Hence we get a formal group law $F\left(T_{1}, T_{2}\right)$ by setting

$$
F\left(T_{1}, T_{2}\right)=e\left(\xi_{\infty} \hat{\otimes} \xi_{\infty}\right)=\sum_{i, j} c_{i j} T_{1}^{i} T_{2}^{j}
$$

where $c_{i j} \in \Omega^{2-2 i-2 j}[11]$. If i is an integer, let $[i]_{F}(T)$ be the operation of "multiplication by i " for the formal group. Let $j: Z_{p r} \rightarrow S^{1}$ be the natural inclusion, which induces $B j: B Z_{p r} \rightarrow B S^{1} \cong C P_{\infty}$. By making use of the $\operatorname{map}(B j)^{*}: \Omega *\left(C P_{\infty}\right) \rightarrow \Omega^{*}\left(B Z_{p r}\right)$, we have

$$
\Omega^{*}\left(B Z_{p r}\right) \cong \Omega^{*}[[T]] /\left[p^{r}\right]_{F}(T)
$$

Moreover it is seen by the method of [6] that the $\operatorname{Ker} \Lambda \cdot(B j)^{*}$ is the ideal

$$
\left[p^{r}\right]_{F}(T) /\left[p^{r-1}\right]_{F}(T)
$$

Since $\left[p^{r}\right]_{F}(T) /\left[p^{r-1}\right]_{F}(T)=p+T \cdot G$, where G is a power series in T, we have

Lemma 2. $D \pi \Lambda^{-1}(0)=p \Omega_{n}$.
The following lemma will show some of the differences between [7] and our case.

Lemma 3. $S^{-1} \Omega_{Z_{p r}}^{*} \cong \Omega_{*}\left(\prod_{j} B U\right) \otimes Z\left[V_{j}, V_{j}^{-1}\right]$. Here $1 \leqq j \leqq\left(p^{r}-1\right) / 2$ and V_{j} corresponds to the Euler class of the 1-dimensional complex vector space on which $\exp 2 \pi i / p^{r}$ acts by multiplication with $\exp 2 \pi j i / p^{r}$.

By combining Lemma 2 and Lemma 3, we have
Lemma 4. The composition $\pi^{\prime} \cdot D \cdot \pi \cdot \Lambda^{-1} \cdot S^{-1} \alpha$ induces a welldefined ring homomorphism,

$$
\beta: \text { Image } \lambda \rightarrow \Omega_{*} \otimes Z_{p}
$$

Let $A: \Omega_{*}\left(\prod_{j} B U\right) \otimes Z\left[V_{j}, V_{j}^{-1}\right] \rightarrow \Omega_{*}\left(\prod_{j} B U\right) \otimes Z\left[\frac{1}{2}\right]\left[V_{j}, V_{j}^{-1}\right]$ be the map induced by the inclusion $Z \rightarrow Z\left[\frac{1}{2}\right]$. It follows from Lemma 4 that β induces a map

$$
\beta^{\prime}: \text { Image } \lambda \otimes Z\left[\frac{1}{2}\right] \rightarrow \Omega_{*} \otimes Z_{p} \otimes Z\left[\frac{1}{2}\right] \cong \Omega_{*} \otimes Z_{p}
$$

Since $Z\left[\frac{1}{2}\right]$ is a flat Z-module, the map

$$
\begin{aligned}
A \otimes 1: \text { Image } \lambda \otimes Z\left[\frac{1}{2}\right] & \rightarrow \Omega_{*}\left(\prod_{j} B U\right) \otimes Z\left[\frac{1}{2}\right]\left[V_{j}, V_{j}^{-1}\right] \otimes Z\left[\frac{1}{2}\right] \\
& \cong \Omega_{*}\left(\prod_{j} B U\right) \otimes Z\left[\frac{1}{2}\right]\left[V_{j}, V_{j}^{-1}\right]
\end{aligned}
$$

is injective and $(A \otimes 1)\left(\right.$ Image $\left.\lambda \otimes Z\left[\frac{1}{2}\right]\right)=$ Image $(A \lambda)$. Therefore we have shown the following

Lemma 5. There exists a ring homomorphism $\beta^{\prime \prime}:$ Image $(A \lambda) \rightarrow \Omega_{*} \otimes Z_{p}$ such that $\beta^{\prime \prime} \cdot A \cdot \lambda=\pi^{\prime} \cdot D \cdot \pi \cdot \alpha$.

Let F_{k} be the subring of $\Omega_{*}\left(\prod_{j} B U\right) \otimes Z\left[\frac{1}{2}\right]\left[V_{j}, V_{j}^{-1}\right]$ generated by $\oplus_{i \leqq k} \Omega_{i}\left(\prod_{j} B U\right) \otimes Z\left[\frac{1}{2}\right]\left[V_{j}^{-1}\right]$.
Put $D_{k}=F_{k} \cap$ Image $(A \cdot \lambda)$.
We now prove the formula (1) of Theorem.
By choosing simply the tom Dieck's examples of dimension zero $\bmod 4$ [7], we have

Lemma 6. There are $Z_{p r}$-actions $\left(M_{j}, Z_{p r}\right) j=1,2, \cdots, k p^{r}$ $+\left(p^{r}-1\right) / 2$, such that
(1) $\operatorname{dim} M_{j}=4 j$
(2) $\left[M_{j}\right]$ is a generator of the polynomial ring $\Omega_{*} \otimes \boldsymbol{Z}_{p}$,
(3) $A \lambda i\left[M_{j}, Z_{p r}\right] \in D_{4 k}$.

It follows from Lemma 6 that

$$
F\left(Z_{p r}, 4 k\right) \supset \Omega\left(4 k p^{r}+2 p^{r}-2\right) .
$$

Suppose that there exists a $Z_{p r}$-action ($M, Z_{p r}$) such that [M] is in $\boldsymbol{F}\left(Z_{p r}, 4 k\right)$ but not in $\Omega\left(4 k p^{r}+2 p^{r}-2\right)$. Since $\Omega_{*} \otimes Z_{p}$ is the polynomial ring over Z_{p},

$$
[M],\left[M_{1}\right],\left[M_{2}\right], \cdots,\left[M_{k p^{r}+\left(p r_{-1)}\right)}\right]
$$

are algebraically independent over Z_{p}. On the other hand, $D_{4 k}$ has transcendence degree at most $k p^{r}+\left(p^{r}-1\right) / 2$. By combining Lemma 5 and Lemma 6, we have already found $k p^{r}+\left(p^{r}-1\right) / 2$ independent elements in $D_{4 k}$. Therefore

$$
\operatorname{A\lambda i}\left[M, Z_{p r}\right], A \lambda i\left[M_{1}, Z_{p r}\right], \cdots, A \lambda i\left[M_{k p^{r}+\left(p^{r-1) / 2}\right.}, Z_{p r}\right]
$$

are algebraically dependent. In view of Lemma 5, this means [M], $\left[M_{1}\right], \cdots,\left[M_{k p^{r}+(p r-1) / 2}\right]$ are algebraically dependent, contradicting the assumption.

The proof of the formula (2) of Theorem will be shown quite similarly.

Corollary 1 and Corollary 2 will follow from Theorem directly.
Remark. Professor Tammo tom Dieck kindly informed me that results in this paper can be generalized to the case of arbitrary abelian p-group actions.

References

[1] Boardman, J. M.: On manifolds with involution. Bull. A. M. S., 73, 136-138 (1967).
[2] Conner, P. E.: Seminar on Periodic Maps. Lecture Notes in Math., 46. Springer-Verlag (1967).
[3] Conner, P. E., and Floyd, E. E.: Differentiable Periodic Maps. SpringerVerlag (1964).
[4] -: Maps of odd period. Ann of Math., 84, 132-156 (1966).
[5] tom Dieck, T.: Bordism of G-manifolds and integrality theorems. Topology, 9, 345-358 (1970).
[6] -: Kobordismentheorie klassifizierender Räume und Transformationsgruppen. Math. Z., 126, 31-39 (1972).
[7] -: Periodische Abbildungen unitärer Mannigfaltigkeiten. Math. Z., 126, 275-295 (1972).
[8] Kawakubo, K.: The Index and the Generalized Todd Genus of Z_{p}-actions (to appear in Proc. Intern. Conference on Manifolds and Related Topics in Topology). Tokyo (1973).
[9] Kawakubo, K., and Uchida, F.: On the index of a semi-free S^{1}-action. J. Math. Soc. Japan, 23, 351-355 (1971).
[10] Ossa, E.: Cobordismustheorie von Fixpunktfreien und Semifreien S^{1}-Mannigfaltigkeiten (Thesis). Bonn (1969).
[11] Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Advance in Math., 7, 29-56 (1971).

