8. Paracompactness of Topological Completions

By Tadashi ISHII Shizuoka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

1. Introduction. All spaces are assumed to be completely regular T_2 unless otherwise specified. This paper is mainly concerned with paracompactness of the completion $\mu(X)$ of a space X with respect to its finest uniformity μ . Such completion of a space X is called the topological completion of X (or the completion in the sense of Dieudonné). Following Morita [12], a space X is said to be pseudo-paracompact (resp. pseudo-Lindelöf etc.) if $\mu(X)$ is paracompact (resp. Lindelöf etc.). Since for any M-space X $\mu(X)$ is a paracompact M-space ([12]), every M-space is pseudo-paracompact.

The purpose of this paper is to study some properties of pseudoparacompact spaces. The details will be published elsewhere.

2. Characterizations of pseudo-paracompact spaces. An open covering $\mathfrak{O} = \{O_{\alpha}\}$ of a space X is said to be extendable to $\mu(X)$ if there exists an open covering $\tilde{\mathfrak{O}} = \{\tilde{O}_{\alpha}\}$ of $\mu(X)$ such that $O_{\alpha} = \tilde{O}_{\alpha} \cap X$ for each α . We note that every normal open covering of X is extendable to $\mu(X)$ as a normal open covering (cf. [9, (I) Lemma 8 and (II) Lemma 1]).

Now let $\{\mathfrak{U}_{\lambda} | \lambda \in \Lambda\}$ be the set of all the normal open coverings of a space X. A filter $\mathfrak{F} = \{F_{\alpha}\}$ in X is said to be weakly Cauchy with respect to the uniformity μ if for any $\lambda \in \Lambda$ there exists $U \in \mathfrak{U}_{\lambda}$ such that $U \cap F_{\alpha} \neq \phi$ for every α . In other words, a filter \mathfrak{F} is weakly Cauchy if for any $\lambda \in \Lambda$ there exists a stronger filter \mathfrak{F}_{λ} than \mathfrak{F} such that $L \subset U$ for some $U \in \mathfrak{U}_{\lambda}$ and $L \in \mathfrak{F}_{\lambda}$. We state first the necessary and sufficient conditions for a space X to be pseudo-paracompact, some of which are the modifications of Corson's theorem [1] for the characterizations of paracompact spaces.

Theorem 2.1. For a space X, the following conditions are equivalent.

(a) X is pseudo-paracompact.

(b) Every open covering of X which is extendable to $\mu(X)$ is a normal covering.

(c) The product of X with every compact space is pseudo-normal.

(d) Every weakly Cauchy filter in X with respect to μ is contained in some Cauchy filter with respect to μ .

(e) If \mathcal{F} is a filter in X such that the image of \mathcal{F} has a cluster

point in any metric space into which X is continuously mapped, then \mathcal{F} is contained in some Cauchy filter with respect to μ .

The equivalence of (a) and (d) was essentially proved by Howes [4].

The following example shows that there exists a space which is strongly normal (that is, countably paracompact and collectionwise normal) but not pseudo-paracompact.

Example 2.2. Let X be a subspace of the product $\prod_{\alpha \in A} R_{\alpha}$ which consists of those points which have at most a countable number of non-zero coordinates, where A is uncountable index set and R_{α} is the real line for each $\alpha \in A$. In [2], Corson proved that (a) X is strongly normal and that (b) $v(X) = \prod_{\alpha \in A} R_{\alpha}$, where v(X) denotes the realcompactification of a space X. But we can prove that $\mu(X) = v(X)$. Hence X is not even pseudo-normal, since $\prod_{\alpha \in A} R_{\alpha}$ is not normal ([14]).

3. Some results related to pseudo-paracompactness. We shall state first the sum theorems of pseudo-paracompact spaces, with which the following two theorems are concerned.

Theorem 3.1. If there exists a normal open covering $\mathfrak{U} = \{U_{\alpha}\}$ of X such that each subspace U_{α} is pseudo-paracompact, then X is pseudo-paracompact.

Theorem 3.2. Let $\{F_{\alpha} | \alpha \in \Omega\}$ be a locally finite closed covering of X such that each subspace F_{α} is pseudo-paracompact. If X is strongly normal, then X is pseudo-paracompact.

We don't know whether Theorem 3.2 is valid or not in case X is not strongly normal.

Now let $f: X \to Y$ be a continuous map. Then there exists its extension $\beta(f): \beta(X) \to \beta(Y)$, where $\beta(S)$ denotes the Stone-Čech compactification of a space S, and it is known that $\beta(f)$ carries $\mu(X)$ into $\mu(Y)$ ([12]). We denote this map by $\mu(f)$. A continuous map f from a space X onto a space Y is called a WZ-map (Ishiwata [6]), a Z-map and a quasi-perfect (resp. perfect) map if it satisfies (1), (2) and (3) below respectively:

(1) $\beta(f)^{-1}(y) = \operatorname{cl}_{\beta(Y)} f^{-1}(y)$ for any $y \in Y$.

(2) f(Z) is closed in Y for each zero-set Z of X.

(3) f is a closed map such that $f^{-1}(y)$ is countably compact (resp. compact) for each $y \in Y$.

Every closed map is a Z-map, and every Z-map is a WZ-map ([6]).

The following theorem is concerned with a relation between f and $\mu(f)$, and it is useful to show that the preimages of paracompact spaces under quasi-perfect maps are pseudo-paracompact.

Theorem 3.3. If f is a quasi-perfect map from a space X onto a topologically complete space Y, then $\mu(f): \mu(X) \rightarrow Y$ is perfect. More generally, if f is a WZ-map from a space X onto a topologically complete space Y such that $f^{-1}(y)$ is relatively pseudo-compact (that is, every real-valued continuous function on X is bounded on $f^{-1}(y)$ for each $y \in Y$, then $\mu(f): \mu(X) \rightarrow Y$ is perfect.

Corollary 3.4. If f is a quasi-perfect map from a space X onto a paracompact space Y, then X is pseudo-paracompact. More generally, if f is a WZ-map from a space X onto a paracompact space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$, then X is pseudo-paracompact.

In case the fibers $\{f^{-1}(y)\}\$ are not necessarily relatively pseudocompact, we have the following theorem.

Theorem 3.5. If there exists a Z-map f from a space X onto a paracompact q-space Y (in the sense of Michael [8]) such that $f^{-1}(y)$ is pseudo-paracompact for each $y \in Y$, then X is pseudo-paracompact.

We note here that if f is a Z-map from a space X onto a q-space Y, then $\mathfrak{B}f^{-1}(y)$ (=the boundary of $f^{-1}(y)$) is relatively pseudo-compact for each $y \in Y$. This is a slight modification of [8, Theorem 2.1]. Hence, to prove Theorem 3.5, it is sufficient to prove the following theorem.

Theorem 3.6. If there exists a Z-map f from a space X onto a paracompact space Y such that $\mathfrak{B}f^{-1}(y)$ is relatively pseudo-compact and $f^{-1}(y)$ is pseudo-paracompact for each $y \in Y$, then X is pseudo-paracompact.

This theorem can be deduced from the following lemma.

Lemma 3.7. If there exists a Z-map f from a space X onto a paracompact space Y such that $\mathfrak{B}f^{-1}(y)$ is relatively pseudo-compact and that, for any open covering \mathfrak{O} of X which is extendable to $\mu(X)$, $f^{-1}(y) \cap \mathfrak{O}$ is a normal covering of the subspace $f^{-1}(y)$ for each $y \in Y$, then X is pseudo-paracompact.

As a direct consequence of Theorem 3.5, we have the following corollary.

Corollary 3.8. Let f be a closed (or Z-) map from a space X onto a metric space Y. Then X is pseudo-paracompact in the following cases.

(a) $f^{-1}(y)$ is an M-space for each $y \in Y$.

(b) $f^{-1}(y)$ is paracompact for each $y \in Y$.

In Theorem 3.5, we can not exclude the assumption that Y is a qspace. This is shown by making use of the quotient map f from the space Π onto the quotient space Π/D (cf. [3, 6Q]), since f is a closed map and $f^{-1}(y)$ is a metric space for each $y \in \Pi/D$. Moreover in Theorem 3.5 we can not replace 'Z-map' by 'open map'. To see this, let X be a metric space and Y a paracompact space such that the product $X \times Y$ is not normal ([7]), and let $\varphi: X \times Y \to X$ be the projection map. Then φ is an open map from $X \times Y$ onto a metric space X such that $\varphi^{-1}(x)$ is paracompact for each $x \in X$. But $X \times Y$ is not even pseudo-normal, since $X \times Y$ is topologically complete.

Concerning Corollary 3.8, we note that if X is the preimage of a metric space Y under a closed map f such that $f^{-1}(y)$ is an *M*-space (resp. paracompact), then X is not necessarily an *M*-space (resp. paracompact). Hoshina proved the validity of the paracompact case by making use of the quotient map $\varphi: \psi \rightarrow \psi/D$ (cf. [3, 5I]). But this example shows that the case for *M*-spaces is also valid.

The problem whether the images (or preimages) of pseudo-paracompact spaces under perfect maps are also pseudo-paracompact or not is unsolved, but we can prove the following theorem.

Theorem 3.9. Let $f: X \rightarrow Y$ be a quasi-perfect map. If X is strongly normal and pseudo-paracompact, then so is Y.

We note that Theorem 3.2 is easily deduced from this theorem.

The following theorem is concerned with the necessary and sufficient conditions for a space X in order that $\mu(X)$ be locally compact and paracompact.

Theorem 3.10. For a space X, the following conditions are equivalent.

(a) X is pseudo-locally-compact and pseudo-paracompact.

(b) There exists a normal open covering $\mathfrak{U} = \{U_a\}$ such that each U_a is relatively pseudo-compact in X.

(c) There exists a normal sequence $\{\mathfrak{U}_n\}$ of open coverings of X such that for each $x \in X$ St $(x, \mathfrak{U}_{k(x)})$ is relatively pseudo-compact in X for some k(x).

(d) There exists a Z-map f from X onto a locally compact metric space T such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in T$.

(e) There exists a Z-map f from X onto a locally compact and paracompact space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$.

(f) There exists a WZ-map f from X onto a locally compact and paracompact space such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$.

The equivalence of (a) and (b) is due to Morita [13], who proved also the equivalence of (a) and (d) independently.

4. Pseudo-Lindelöf property. For a space X we denote by v the uniformity of X which consists of all the countable normal open coverings of X. As for the characterizations of pseudo-Lindelöf spaces, we have the following theorem.

Theorem 4.1. For a space X, the following conditions are equivalent.

(a) X is pseudo-Lindelöf.

No. 1] Paracompactness of Topological Completions

(b) X is pseudo-paracompact and any normal open covering of X has a countable subcovering.

(c) Every open covering of X which is extendable to $\mu(X)$ has a countable subcovering.

(d) Every weakly Cauchy filter in X with respect to v is contained in some Cauchy filter with respect to μ .

(e) If \mathfrak{F} is a filter in X such that the image of \mathfrak{F} has a cluster point in any separable metric space into which X is continuously mapped, then \mathfrak{F} is contained in some Cauchy filter with respect to μ .

The equivalence of (a) and (b) was proved by Howes [4].

As is easily seen from (c) in Theorem 4.1, the image of a pseudo-Lindelöf space under a continuous map is pseudo-Lindelöf. This result was first pointed out by K. Morita. Therefore it follows that if a space X is the countable union of the pseudo-Lindelöf subspaces then X is also pseudo-Lindelöf.

Corresponding to Theorem 3.5, we can prove the following theorem.

Theorem 4.2. If there exists a Z-map f from a space X onto a Lindelöf space Y such that $f^{-1}(y)$ is pseudo-Lindelöf for each $y \in Y$, then X is pseudo-Lindelöf.

To prove this theorem, we make use of the following lemma.

Lemma 4.3. If there exists a Z-map f from a space X onto a Lindelöf space Y such that, for any open covering \mathfrak{O} of X which is extendable to $\mu(X)$, $f^{-1}(y) \cap \mathfrak{O}$ has a countable subcovering for each $y \in Y$, then X is pseudo-Lindelöf.

References

- H. H. Corson: The determination of paracompactness by uniformities. Amer. J. Math., 80, 185-190 (1958).
- [2] ——: Normality of subsets of product spaces. Amer. J. Math., 81, 785-796 (1959).
- [3] L. Gillman and M. Jerison: Rings of Continuous Functions. Van Nostrand, Princeton, N. J. (1960).
- [4] N. R. Howes: On completeness. Pacific J. Math., 38, 431-440 (1971).
- [5] M. Katětov: Extensions of locally finite coverings. Colloq. Math., 6, 141-151 (1958).
- [6] T. Isiwata: Mappings and spaces. Pacific J. Math., 20, 455-480 (1967).
- [7] E. Michael: The product of a normal space and a metric space need not be normal. Bull. Amer. Math. Soc., 69, 375-376 (1963).
- [8] ——: A note on closed maps and compact sets. Israel J. Math., 2, 173-176 (1964).
- [9] K. Morita: Simple extension of a space with respect to a uniformity. I, II. Proc. Japan Acad., 27, 64-72, 130-137 (1951).
- [10] ——: Paracompactness and product spaces. Fund. Math., 50, 223-236 (1962).

Т. Ізни

- [11] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [12] —: Topological completions and M-spaces. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 10, 271-288 (1970).
- [13] ——: On the dimension of the product of Tychonoff spaces. Gen. Top. and its appl., 3, 125-133 (1973).
- [14] A. H. Stone: Paracompactness and product spaces. Bull. Amer. Math. Soc., 54, 977-982 (1948).
- [15] H. Tamano: On paracompactness. Pacific J. Math., 10, 1043-1047 (1960).