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3. The Fundamental Solution for a Degenerate Parabolic
Pseudo-Differential Operator

By Chisato TSUTSUMI
Department of Mathematics, Osaka University

(Comm. by Kosaku YOsIpA, M. J. A., Jan. 12, 1974)

Introduction. In the present paper we shall construct the funda-
mental solution U(t) for a degenerate parabolic pseudo-differential
equation of the form

ou . _ ; n
©.1) Lu_§+p(t s 2, Du=0 in (0, TYXR
u|¢=o=uo
where p(; x, D) is a pseudo-differential operator of class £Y(S7,) which
satisfies conditions (cf. [1], [56]):

(i) There exist constant C and m/ (0=<m’<m) such that
0.2) Rep(t; z, &) =CE™ uniformly in ¢t (0t<T).

(ii) For any multi index a=(a;,- -+, @), =B, - -, B,) there exists
a constant C, , such that
©.3) [P (t; x,8)/Re p(t; «, §)I§C¢,p<§>‘”'“‘*”‘ﬁ[

uniformly in ¢t (O£t T),
where p{)(t; 2,8 =(3/3&) - - - (9/0§,)(—1d/0x,)*- - - (—10/02,)*"p(t; %, §),
lee|=lay|+ + -+ +]anl, [BI=]Bi]+ - - - +]Ba| and (E>=(1+|EHV2

The fundamental solution U(t) will be found as a pseudo-differ-
ential operator of class S%, with parameter ¢. Then the solution of
the Cauchy problem (0.1) is given by u(t)=U(t)u, for u, € L* and more-
over for #, € L? (1<p<co) in case p=1, using that operators of class
S7, are bounded in L? for 0<6<p<1, in L? for 0<5<1, p=1 (see [1]-
[3D.

The solution U(¢) is given in the form U(t)=e(t,0; x, D) where
e(t,s; x, D) is the solution of an operator equation

{ L, et s;2,D)=0 int>s (0=s<tgTD)
e(t,s; 2, D)|,_s=1,
which can be reduced to an integral equation of the form

0.0) 74t s;2,D)+olt,s; @, D)+j’m(t,a; 2, D)la, s ; %, D)do=0,

where 75(t, s; ¢, D) is a known operator of clags St;*=2@+b  To solve
(0.4), we shall calculate the symbol for multi product of pseudo-differ-
ential operators in precise form by using oscillatory integrals in [4]
and [6].

1. Notations and Theorem. We shall denote by ST, (0<6<p<1,
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— oo <m<oo0) the set of all C~-symbols p(x, &) defined in R? x R?, which
satisfy for multi-index a=(a;, - - -, &,) and =B, - - -, )

1.1 (D@, S C g EHm P11+

for some constants C';, where p{g)(x, &) is defined as above. For a
symbol p(z, &) € S7, we define a pseudo-differential operator by

Pu()=p(x, Dyu() =jew~fp(x, Buede,

where d&=(2r) "dé and 4(§) denotes the Fourier transform of a rapidly
decreasing function u(x) defined by

(&) =J‘e‘”“u(x) dx.

Definition 1.1. For a p(x, £) € S™, we define semi-norms |p|,,; by
|Pln,x= max sup (1D (@, &) |(Ey~m+elai=a11}

lal+1Blsk (2,
then, S™, makes a Fréchet space with these norms. &£)(S7,) is the set

of all functions p(t; «, &) of class S7, which are continuous with respect
to parameter ¢ for 0t T.

Definition 1.2 ([6]). We say {p,(x,&)};., of S7, converges to a
o(x, &) e S™;, weakly, if {p(z, §)}7., is a bounded set of S7'; and p,{(x, &)
—pB(x, &) as j—oo uniformly on R; X K for any «, 8, where K is any
compact set in R". We denote by w—&3 (S7,) the set of all functions
p(t, s; x, &) of class S7, (0=<s<t=<T) which are continuous with respect
to parameters ¢t and s with weak topology of S7,.

Theorem. Under the assumptions (0.2) and (0.3) we can construct
E(t,s)=e(t,s; x,D) e w—&} (S7,) (0=<s<t<T) which satisfies the fol-
lowing conditions:

(A) L,.E,8)=0 n t>s

B) EG,s)|-s=1

(C) For any sufficiently large N, we can write

e(t,s; x, E)=jZJZ‘6 e,(t,s; x, &)+ {E—s8)fy(t,s; 2,8

where

(C-D)  eylt,s; »,8) e w—E1(S;¥~)

(C-2) et,s;x,8—1 (|9 in S, weakly

(C-3) ey(t,s; 2,80 (| s)inS; ¢ weakly (j=1)

(C-4) fat,s;2,8) ew—E7(Sp; =W D)

(C-5) |fwip(t, 852, 8|S C, (t—s)KEHIm =W +D=plal 3Bl for gmy e, f.

2. Proof of Theorem. As in [8], [7], we construct e,(t,s; , &)
0<s<t<T) (=0) in the following way.

@.1) { [%+p(t; z, 5)]eo(t, s;x,8)=0 int>s
eo(ta S5, 5) lt,=.3=1

and for =1
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a ’ N —_— . .
2.2 [@7+p(t P 8)]ej(t’ $; @, 8)=—q,t,s; 2,8 int>s

ej(t, S, %, 5)'t=s=0’
where q,(t, s; x, &) is defined by
j-1
@3 gt 20=2 T Lpot; 2, Oet s 2,8,

k=0 |a|+k=] X
Set e;§(, 85 2,8)=a,,,,s; 2,8 exp (—fp(a; z, S)do) (7=0) and

95,85 2,8)=b; .4, 8; 2, ) exp( —J:p(a; z, E)do> (j=z1). Then we
have by (2.1) ~(2.8) and (0.3) the following estimates.
Proposition 1. We have
[a,q6(t, 85 @, 8|S C, &)l taRI= DIy, o,
10,05, 85 2,8 |SC, s Rep(t; x, E)E)eleltobl=e=2igl o
where w; , , and o}, , are defined by
wg,00=1, Wy, a,p=MAX {0, @' * 1?1} ||+ |] 250
wj’“,ﬂ____max {wz’ w]a|+lﬁ|+2j} (.721)
@), y=1aX {0, @'+~ GG=1)

and w:f Re p(o; x, &)do.
8
Now by the expansion theorem in [2], we can write for any N

—_— . . _L (a) .
@.4) o(PE)=p(t; z, §e,t, s; x, &)+0<[u§N_m ! p(t; %, &)

X €yt 83 %, &)+ 7y, (L, 85 2, 8).
Taking summation in j, it is clear by (2.1) ~(2.3) that

N N N
Lz,t(Z Ej>=Z [(—a—ﬂo)ej](t,S; x, D)+ 2 q,(¢, 85 2, D)
7=0 =L\ ot j=1
@.5) +37 7ot 85 %, D)
Jj=0

N
=>" 1yt 8; 2, D)=ry(,s; z, D).
7=0

The following estimates are clear with the aid of Proposition 1
and (2.4).
Proposition 2. We have ry 4(t,s; 2,8) e w—&},(Sy; 7"V *Y) and
for any a, B
ITN,ng;(t’ S; x’ 5)]éC,,,ﬂ(t—8)<5>2m_(p—a)(N+l)_plalH]ﬁl.

Put fj e,(t,s; ¢, D)=ky(t,s; x, D), then we have by (2.5)
7=0

{ L, Kx(t,s)=Ry(t,s) int>s (O=s<t<T)
Ky, 8)|;os=1.
Now, we construct e(t, s; «, D) as the following form:

elt, 33 7, D)=lnlt, 53 &, D)+ [ nlt, 05 2, D)oo, 55 , D)do.
Then, using (2.6), ¢(t, s; x, D)=>0(t, s) must satisfy

(2.6)
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@7 L, E(t,8)=Ry(t, )+ O(t, s) + j ‘Rult, 0)0(0, 8)do.

Set
Ql(t, 8): _RN(ty 8),
and for j>2

O (t,5) =j:a>l(t, 0,0, )do

t (*S1 S$j—-2
(2.8) =jsjs v 'I: Ql(t’ 31)@1(319 32)@1(32: 33)
< Di(85_,,8)ds,;_,dS;_,- - - dsy.
Then
i !
@j(t’ 8) = @1(t> 8) + Z Qj(t, S)
2.9) =t I=

— —Ry(t,9)—[Rut, 0 S 0,0, 8)do.
8 J=1

For o(®,(t, 8))=¢,(t, s; x, &), we have the following
Proposition 3. We have some constants A, , and A’ ;, which are
independent of 7, such that

@10 g, 95 2 IS (ALY b— ) (gymmrisasi =iy
J—1):

(2.]_]_) I?jé;;(t’ s; x, g),é(A:’ﬂ)1%<g>m—plal+a|ﬁl—(p—a)(N+1>.

In view of Proposition 3, we have > ¢,=¢pc w—E&} (Sy; ¢ 2@+D)
Jj=1

and (2.9) means that O(t,s)=¢(t, s; x, D) given above satisfies (2.7).
Note that Ky(t, s) e w—&3,,(S5 ;) and

Isoggg(t, s x, &)léca,ﬂ(t_s)<5>2m-plal+3|ﬁl—(p—5)(N+1)_
Then we have the assertion of theorem.

Proof of Proposition 3. Using the oscillatory integral in [4], we
have from (2.8)

os(t,s; @, S)=”h‘ ‘ -fsf_’dsj-r . -dsl[Os—-”' . -fe“zf:””“

Jj-2 13
X, 85 2, E4+1,) ,ﬂl sol(sk, Ski1) 9c+l§1 Y1 $+m+l)

j=1
Xsox(sj_n s;x+ ?.:1 Yy &)dyldm- . -dyf_ldm_l].
Note ¢, e w—E&),(S7; =¥ +Y) and rewrite

o= (14 & )™ | [") (L (E+ 7™ (— A, "0) e~ 0w,
Then we have

oS @[ [ [ e dsigeymetepney

j—1
X1 [[@+ et uapa- e+ om0 may,dy,
where 7,>(n/2) is an integer. If we take N such that m—(o—d)
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(N +1)<—mn, then we get

]ng(t, s; x, g)'é(Cno)J%_'_l<g>m—(p—a)<N+1>.
j—1)!
By Proposition 2, we can prove (2.11) for a=8=0. For any «, 8 (2.10)
and (2.11) are proved in the same way.

Example.
Lx,t:%+a(t) | [ — d)™ 4 (— )

where a(t) e C~[0, T1, a(t)=0, and b and m are positive integers such
that b+1>m.
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