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1. Introduction. A notion o interaction information was intro-
duced by McGill [2] and it was used in multivariate information
analysis. Lately, it is shown that it plays an important role especially
in the variables connected with Markov dependence [5]. However, it
seems that the essential problem suggested by McGill" under what
conditions does 3-dimensional interaction information take positive,
zero and negative values ? is not yet solved. The purpose of the present
note is to show that it deeply relates to the trace of the product matrix
o the three transition matrices, each of which represents the relation-
ship between the variables. It is also shown that if the trace is equal
to 1, the variables having zero interaction information constitute some
intermediate dependence lying between Markovian dependence and
independence. In addition, we show some processes realizing positive
and negative interactions.

2. Definitions and basic properties. Consider the random vari-
ables X, Y and Z, taking only finite number o states {a, a.,..., a},
{b, b,..., b} and {c, c,..., c}, respectively, where L, M and N are
positive integers. P(XYZ) denotes the unction taking the joint prob-
ability value p(i]k)=P(X--a,Y--bj, Z=c) when X=a,Y=bj and
Z-c. Then, 3-dimensional interaction information of the variables
X, Y and Z is defined by

J=J(XYZ)--E{log [P(XYZ)P(X)P(Y)P(Z)
(2.1)

/ (P(XY)P(YZ)P(ZX))]}
or, equivalently, using the conditional probabilities,

J=E{log [P(XYZ) /P(Y X)P(Z Y)P(X Z))]} (2.2)
where E means the expectation over all P(XYZ). This may be more
instructive if we rewrite it as

J-- E{log [P(XZ Y) / (P(X] Y)P(Z Y))]}
--E(log [P(XZ) / (P(X)P(Z))]} (2.3)
EI(X, Z Y) I(X, Z).

The first term of (2.3) is the conditional information between X and
Z, given Y, and the second, the mutual informatio between X and Z.
Thus, J may be considered as a measure which suggests the effect of
Y with respect to X and Z. Since J is symmetric with respect to each
variable (cf. [5]), these representations do not lose the generality.
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Now, consider the form (2.2) and rewrite it as
J---E{log [P(XYZ)/((1/C)P(YIX)P(ZI Y)P(XIZ))]}-log C (2.4)

where C is given by
C-- , P(Y X)P(Z Y)P(X Z). (2.5)

Here the summation is taken over all values o2 X, Y and Z, and we
assume that even if one of the conditional probabilities reduces to zero,
it affects nothing to J. Clearly the first term of (2.4) is a discrimina-
tion between the two 3-dimensional distributions (cf. [3]), so that we
have

Lemma 1. J_>--log C. The equality holds only when C=1 and
then

P(XYZ) P(Y X)P(Z Y)P(X Z) (2.6)
holds good.

Proof. The first assertion is almost clear. We shall assume that
the equality holds. Clearly, it is required that

P(XYZ) (1/C)P(YIX)P(ZI Y)P(X Z).
From this we have

P(XY)-- (1/C)P(YIX) P(ZI Y)P(XIZ), i.e.,

P(X) (l/C) , P(Z Y)P(X Z),
z

provided P(Y IX) :/: 0. Since P(Y IX)-- 0 implies only the trivial case,
we shall have 1=(1/C) x, P(ZI Y)P(XIZ) by summation. This
proves that C--1 and (2.6) holds. Q.E.D.

3. A condition for interaction information zero. Lemma 1
suggests the classification of situations by introducing the trace of

PQR=the product of the transition matrices;
P=(p), Q--(q) and R=(r), where p=P(Y=bIX=a),
q=P(Z=cl Y--b) and r=P(X=alZ=c), (3.1)
i---1, ...,L; ]=1, ...,M; k--l, ...,N.
Theorem 1. A 3-dimensional interaction information becomes

zero if and only if (2.6) holds, provided the trace of PQR is equal to 1.
Moreover, such a distribution is constructed from any transition
matrices P, (2 and R satisfying

PQ=O, QR--O and RP--O, (3.2)
where P=(/), Q-(/) and R:() are defined by

=p--p, b=q--q and =r-r (3.3)
(i--2,...,L; ]=2,...,M; k--2,...,N)

Proof. Let tr (PQR)--C--1. Then, by Lemma 1, J is zero if and
only if (2.6) holds. Now assume that (2.6) holds. Then

P(XY) P(Y X) , P(Z Y)P(X Z).

Thus, excepting the trivial case of P(Y]X)=O, we have
P(X)-- P(Z Y)P(X Z). (3.4.1)

z
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Similarly, we obtain
P(Y)=] P(XIZ)P(YIX) (3.4.2)

P(Z)-- Y, P(YIX)P(ZI Y) (3.4.3)
Y

provided P(XYZ):/:O. We shall then show that (3.4.1)-(3.4.3) imply
(3.2). Let (3.4.1) be satisfied. Since the right hand side of (3.4.1)
again forms a stochastic matrix and does not depend on Y, we must
have QR P*, where P* is defined by the distribution of X such that

/,*

(i, P2, PL
and p--P(X=a), i--l,...,L. This implies that for any ] and i,, qr-, qlr, or, -], (q q)(r- r) 0, i-- 2, ...., L;
]=2,...,M. Thus, we have R=0. Analogously, we see that the
other two of (3.2) follow from (3.4.2) and (3.4.3). On the other hand,
if we construct a 3-dimensional distribution from (2.6), using these
P, and R which satisfy (3.2), then clearly it satisfies our require-
ment. Q.E.D.

Corollary. Any transition matrix P satisfying P2=0 defines the
distribution for which J=0.

Theorem 1 implies the previous results in [5] for the special case.
In fact, if the variables form a Markov chain, then the interaction
zero occurs only when the first and the last variables are mutually
independent. Further, if the chain is homogeneous, it will generate
a 1-dependent Markov chain, i.e., the corresponding variables
(X,X/, ., X) and (X,X/, ., Xt) are mutually independent
whenever s--] 1 (1 _< i_ ] s_ t i, ], s, t" integers).

4. Positive and negative interactions. We show some condi-
tions for positive and negative interactions. Firstly, Lemma I suggests
the following theorem.

Theorem 2. A 3-dimensional interaction information takes posi-
tive values if tr (PR)_I, provided that we do not take into account
of the system derived from (2.6) when tr (PR)=I.

On the other hand, for the remaining case, we have
Theorem ). For the variables satisfying tr (PR) I, the corre-

sponding 3-dimensional interaction information can take positive, zero
and negative values.

Proof. It suffices to give an example of the distribution satisfy-
ing the condition of the theorem such that the corresponding J takes
positive, zero and negative values. For this purpose consider the next
distribution’
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i ] k p(i]k)
1 1 1 1/18+
1 1 2 I/9--
1 2 1 2/9+a
1 2 2 1/9--6

where we assume I1, [61_<1/18.

2 1 1 1/9-
2 1 2 2/9+e
2 2 1 1/9--6
2 2 2 1/18+6

From this we have
tr (PQR): 82/81 + 4(, +) / 9.

Let ,+3=0 and =2x/9 (Ixl_<l/4).

where

Then, we obtain easily
J- (5 / 9) log (9 / 10) + (4 / 9) log (9 / 8) + H(x),

H(x)=(1/18)[(1 +4x) log (1 + 4x) + (1--4x) log (1--4x)]
+(2/9)[(1+2x) log (1 +2x) + (1--2x) log (1--2x)]
+ (2/9)[(1 + x) log (1 + x) + (1-- x) log (1-- x)].

Since H(x) is a continuous, symmetric and convex function of x and J
takes its minimum value J (5/ 9) log (9 / 10) + (4/9) log (9/8) when the
variables form a Markov chain, J takes positive, zero and negative
values. In fact, J is negative and IJIH(1/4). Q.E.D.

Finally, consider a process which realizes positive or negative
interaction. Generally, we can write

p(i]k)=ppq+,
with

(4.1)

e=0 and =0. (4.2)
k

Lemma 2. Assume that
e, =0. (4.3)

Then, for any distribution of the form (4.1)-(4.3), the trace of P{2R is
not less than 1. It equals to I only when X and Z are mutually
independent.

The proof ollows rom the direct computation and Schwartz
inequality.

Now let us introduce random transformations such that
(n+l) (n)- and (+> ()

u =E q q. (4.4)

This means that some number of channels are inserted between X and
Y, and Y and Z, respectively. Then the distribution becomes

+ [< (4.5)
(’ -(’> 0 (4.6)ijk

Lemma (cf [1]). Let mn--Min, [()] Min (n)] Then the
sequence {m :n= 1, 2,... } is nondecreasing in n.

Lemma 4 (cf. [5, 6]). Define by
p(ik)_p,rn) +,, r)_ p, (n).(n) (4.7)

Then we have )0 uniformly for each (i, k) as n if and only if
the relation
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lim P=O (4.8)

holds. Here P and O. are given by (3.3).
Theorem 4. Let some {p i--1, 2, L}, P and O. be given.
(1) If the variables Xn, Yn and Z (n>_ 1) define the distribution

p(i]k) ()() (4 9)
where saei,fies (4.2), (4.3) and lem,, aud P, are so selected
as to satisfy (4.8), hen he interaction information becomes positive

for suciently large n, provided not all are zeros.
(2) If the variables X, Y and Z (n 1) define the distribution

p(i]k) ppq+ ,-() (4.10)
where -() satisfies (4 6) and ]<ppq, then the interaction infor-
mation becomes negative for suciently large n when-()0 (n)
uniformly for each state, provided P, Q are selected such that P0.

The proof follows from the Lemmas 2-4 and the inequality
(1/2) {+ [e/(ppeqa)] + ,/(pepq)]}

( )__ ( )--log 1+ ,/(per)] <J<log 1+ [e/(p,p#q)]

-0/2) {+ [G/(p#0]-
where + means the sum over all values of e;>0 or 3>0, and (4.1),
(4.2) and (4.7) with p(i]k) substituted by p(i]) are assumed.
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