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On the Existence o Global Solutions of Mixed Problem
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(Comm. by KSsaku YOSIDA, M. 1. A., March 12, 1974)

1. Introduction and summary. We study a mixed initial-bounda-
ry value problem of non-linear Boltzmann equation. The boundary
condition considered here is the periodicity condition, to which the
perfectly reflective boundary condition for the case of a rectangular
domain can be reduced, [1]. Our hypotheses on collision operators are
those or the so-called cut-off hard potentials, [2]. The solutions or
the mixed problem have been known to exist only locally in time, [1].
Our aim is to show their global existence.

We denote by f=f(t, x, ) the density distribution of gas particles
at time t >0 with respect to the position x= (x, x, x) e R and velocity

=($, , $) e R. Our mixed problem is

(1.1 a) 3f

_
3f + Q[f f],

t i:i X
(1.1b) f is periodic in x,
(1.1 c) f It=o:foO,

(1.
[f’ 1- q(l- , o){z((’ +Z(’)(-

f(’)()}d’d.
Here f()=f(t, , ), etc., while S, cos 0=(, --’)/-’, =+(, --’) and ’=’--(, --’). The assumption of the cut-off hard
otential means, [2], that there exist constants q0, q> O, 0 < 1 and
for any v> 0,

(1.) Oq(v,O)q, leosO(v+v-), q(,O) sinOgO)qv(l+v)-.
Let DR be a fundamental rectangular domain of he eriodieity

condition. Let ()=e- be a axwellian (Gaussian) distribution.
With suitable changes of variables z, and t, we may assume hat,
with {h()}== {1, , , a, I I},

Put =hg. Define the (formal) operators L and F as

(1.5) Lu=g-Q[g, gu], F[u, v]=g-Q[gtu, gv].
Under the assumption (1.3), L takes the form, [2],
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(1.6) L-- A +K Au ,()u, Ku K(, ’)u(’)d’.

Noting that Q[g, g] =0, [2], we put f= g + g1/2u and rewrite (1.1) with

-- xi
+[u’ u],

(1.Tb) u is periodic in x,

RS

(1.7d) u t=0=u0.
Here the additional constraints (1.7c) arise rom the well-known con-
servation laws, [1], or (1.1).

Let l0 and let H(T) be the Sobolev space on the torus T--R/9.
We may admit a non-integer or I. Let us consider the Hilbert space
H of unctions u--u(x, ) defined as

(1.8) H--L(R; H(T)), (u, v)=[ (u(., ), v(., #)).(,)d#.
dRS

We define the operator B in H as

(1.9) B---- +L,xi=l

with (B)--{u e H;=#,+,(#)u e .H} as the domain of definition.
The ollowing is a key theorem or our existence proof.

Theorem 1.1. Let lO, then,
) B is a generator of a contraction semi-group etB.

(ii) B has 0 as an eigenvalue with the five-dimensional eigenspace
spanned by {}=. Denote its eigenpro]ection by P.

(iii) Z0, vT<z, C0, vt0, [et(I-P)[]Cre-.
Once this theorem is proved, we can construct solutions of (1.7) by

the iteration procedure by which Grad [1] obtained local solutions of
(1.7) using only the estimate etB 1.

More precisely, we shall consider the Banach space H,;

(1.10) H,--{u(x, ) (1 +l)u e L(R; H(T)},
]]u],=sup (1+]#1) llu(., #) [,),

#RS

and think of B of (1.9) as the operator in H, with (B)--H+,+. We
shall later see that F[u, u] e H, whenever u e (B) if/0.5, fl0. We
regard the mixed problem (1.7) as the evolution equation in H, with
/>0.5, fl>1.5;

(1.11) du(t) --Bu(t)+F[u(t), u(t)], u(t) e Ker (P), u(+0)=u0,
dt

where du/dt is the derivative of u in the strong topology of H, and
Ker (P) is the null space o the projection P on Ht defined in Theorem
1.1. Note that H.H if> 1.5. Now, our existence theorem reads as

u=u(t, x, ) as

(1.7a)
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Theorem 1.2. Let/0.5, 1.5, 0 and 0/. Then there
exist positive constants and c such that, if Uo e Ht+/,,++, Ker (P)
and if ]u0]]++,++,a, then (1.11) has a unique solution

u(t) e L([O, ) Ht++,++) C([O, ) Ht+,+) C([O, ) Ht,)
satisfying
(1.12) u(t) [ + +, + + 2e-ft.
Thus the solution f o (1.1) tends to g exponentially when t.

2. Lemmas on collision operators. We denote by a(A) the
spectrum of an operator A, and by a(A), a(A), aa(A) the essential,
point, discrete spectrum of A.

The conditions (1.3) and that q is measurable lead to the following
lemmas ([1], [2]),

Lemma 2.1. () is measurable on R and ,0gv()gv(l+]) with
some positive constants o, .

Lemma 2.2. ) K(, ’) is measurable and symmetric on R R3.

(ii) vfl0, x>0, v# e R3, f, [K(#, #’)l (l+[#’]-d#’x(l+l#l)--.
(iii) x0, v R3, [ [u()-K(, ’)[2 d’

d

Lemma 2.3. (i) L is se[f-adjoint, non-positive in H with (L)
=(A)--{u e H; ,()u e H}.

(ii) For L in L(R3), 0 e aa(L) with the eigenspace spanned by

Lemma 2.4. (i) For any 11.5 and fl l, A-F[u, v] is bounded
fromH, H, into H, ,)0, Vu, veH,, I[A-[u, viii <W,

(ii) If l> 1.5, fl>2.5, and u e H,, then F[u, u] e Ker (P). (Note
that F[u, u]=AA-F[u, u] e H,_H since fl--l> 1.5.). Outline of the proof of Theorem 1.1. In this section we
think of A, K and L as operators in Hr. Define the operator A0 as

(3.1) (A0)-- ueH;ueH A0=-- 0

= = Ox
It is anti-seff-adjoint and generates a unitary group eTM. Moreover,
a(Ao)--iR and a(A0) (0} corresponding eigenfunctions being constant
in x. Since the C0-semigroup et exists, ][eta[]e-t, and since A0 and
A commute, eteTM orm a C0-semigroup, [3]. Denote its generator as
A. It is not difficult to show

Lemma .1. (i) A=Ao+A, (n)=(no)(A). (ii)]eta][e
(iii) a(A)=a(A)--{2; Re 2-- --(#), # e R}.

Thus the resolvent (2--A)- exists ff Re 2-0. The ollowing is
a key to the proo o Theorem 1.1.

Lemma .2. Let lO. (i) K(2--A)- is compact on H, Re2,0.
(ii) For any fl--o, K(2--A)- 0 (2[) uniformly for 2, Re

The proo is carried out with the aid of the Fourier series repre-
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sentation of u e H and
Lemma 3.3. A-1K and consequently KA-1 is compact on L(R3).
Let us define the operator B as

(3.2) B--A/K--Ao/L, (B)=(A)=(Ao)(L).
Since K is bounded, B is a generator of C0-semigroup etB, and owing
to Lemma 2.3, B is dissipative. Therefore we see

Theorem .1. B is maximally dissipative.
As a consequence, a(B) {; Reg0}. On the other hand Lemma

3.2, (i) implies that K is A-compact, [4], so that a(B)=a(A) and each
2 e a(B) is a pole o the resolvent (--B)-. Moreover,

Theorem .2. (i) For any fl --o, a(B) { Re} is a finite
set. (ii) Z0, a(B){0} {2;Re 2--Z}. (iii) 0 e a(B) with the eigen-
space spanned by (}=, and is a simple pole of (2--B)-.

Proof. (i) ollows rom Lemma 3.2, (ii). Suppose y e R, iy e a(B),
and let u be a corresponding eigenfunction; Bu--iyu. Then (Aou, u)t
+(Lu, u)--iy(u, u) whence Lu--O by the non-positivity o L and Aou
=iyu, i.e., iy e a(Ao)-{O}. This and (i) imply (ii).

The Fourier series representation gives

Lemma 3.4. Write =fl+i. For any fl--Vo, u e H,

II(--A)-lull dr
+0(3.3)

Since (B)--(A), he seeond resolven equation holds, giving

(2--B)--- (2--A)- + Z(2)
(a. 4) 2(2) (2-A)-(I K(2-A)-)-K(2-A)-,
and, since both et and e are C0-semigrous, we have, by the inverse
Laplace transformation, for any

(g.) e e+-lim 1 "* e2(i)gi, t> O, (B).

Define the integral
l f e(fl+i)d.(3.6) z(t)=

Lemmas g.2 and g.4 lead o
Lemma 3.5. Let >--o be eh that
(i) The itegr Z(t) eoverge aboteg i the we oefator

Theorem 3.3. get --<<0,
(g.7) e--e+e(t)+P, t)O.

Proof. Lemma g.2, (ii) allows us to shif he integration path in
(.) to he line Ne2=, and esoeZ(2)=es=oe(2--B)-=P by
heorem .2, (iii).
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Now, Theorem 1.1 follows from Theorems 3.1, 3.2, 3.3 and Lemma
3.5, (ii).

4. Outline of the proof of Theorem 1.2. Let 0. Define

S,,--LT([0, c) H++,++) f C([0, ) H+,+) C([0, c) H,),
and put, with 7 e R,
(4.1) u 1[--l[ u[]++,++, ]u ]-- sup e

t>0

In this section we think of operators A,K,A and B in H, with
.(A)--.q)(A)--_q)(B)=H+,+. The operators eTM o the previous section
orm a semigroup also on H,, though it is neither strongly continuous
nor has A as a generator. Nevertheless, we can show

Lemma 4.1. Let Uo H+1+,+1+, e0, and put (t)-etuo
(i) o(t) e S,,,. (ii) II(t)l]<e-otl]Uoll. (iii) ’(t)-A(t) where ’(t)

is the derivative of (t)in the strong topology of H,.
The ollowing lemma plays an essential role or our purpose, the

assertion (ii) of which is due to Grad [1].

Lemma 4.2. Let f(t) e S,, and define ;(t)-.[o e(-s)aAf(s)ds.

( ) ;(t) e S,,,,. (ii) v’<o, I;lmax (1, ,0 Ifl.
\ /

(iii) z’(t) =A(t) + Af(t), in H,.
Put w(t)--(t)+ z(t) and consider the integral equation

(4.3) u(t) w(t) + [[
Using the Neumann series, we easily see

Lemma 4.3. Let Uo and f(t) be as in Lemmas 4.1 and 4.2. Then,
(4.3) has a unique solution u(t) e S,,,, which is also a unique solution
within S,,, of the equation

(4.4) u’(t)--Bu(t)+Af(t), in H,; u(+O)--uo.
By virtue o Theorem 1.1, (iii), we can show, using the arguments

given in [1],
Lemma 4.4. Let l>O, fl>l.5, ?v0, and let Uo, f(t) and u(t) be

those of the previous lemma. Suppose, further, that uo, Af(t) e Ker (P),
then, with some positive constants a-a,,,o and b-b,,r,, we have
u(t) e Ker (P) and
(4.5) lu]<a Ilu0ll + b ]f].

Proof of Theorem 1.2. Let />/0.5, fl/>l.5, e>0 and let
u0 e H++,++ f Ker (P). Consider the integral equation

(4.6) u(t)- etAuo--.It, e(t-s)AKu(8)ds +.[o e(t-s)AF[u(8), u(s)]ds,

which we solve by the iteration

(4.7) un(t)_ etAUo+ ft e(t-s)AKun(8)ds +[ e(t-s)Aff[un-l(8), u"-(s)]ds,
Jo Jo
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for n> 1 aud u(t)=0. Lemmas 2.4 and 4.4 imply un(t) S,, ’! Ker (P)
and for 0_<r0, with ]=]++,++,

Choose a and a as
1 1 (1- l--4aba).(4.9) 0 < <4ab’ " a:

2b
Let ][u0[[a, then [u]a, from (4.8). Similarly, we can get
(4.10) [u+--u2ba[u--u-], nl
whence u(t) converges in H,++,,,++, to some u(t)
C([0, );H+,+)Ker (P) uniformly in t, and [u[a. It is not
difficult to see that this u(t) is a desired solution of (1.11).

A more detailed exposition will be presented elsewhere.
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