# 40. On the Existence of Global Solutions of Mixed Problem for Non-linear Boltzmann Equation 

By Seiji Ukai<br>Department of Applied Physics, Osaka City University<br>(Comm. by Kôsaku Yosida, m. J. A., March 12, 1974)

1. Introduction and summary. We study a mixed initial-boundary value problem of non-linear Boltzmann equation. The boundary condition considered here is the periodicity condition, to which the perfectly reflective boundary condition for the case of a rectangular domain can be reduced, [1]. Our hypotheses on collision operators are those for the so-called cut-off hard potentials, [2]. The solutions for the mixed problem have been known to exist only locally in time, [1]. Our aim is to show their global existence.

We denote by $f=f(t, x, \xi)$ the density distribution of gas particles at time $t \geqslant 0$ with respect to the position $x=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{3}$ and velocity $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \boldsymbol{R}^{3}$. Our mixed problem is

$$
\begin{gather*}
\frac{\partial f}{\partial t}=-\sum_{i=1}^{3} \xi_{i} \frac{\partial f}{\partial x_{i}}+Q[f, f]  \tag{1.1a}\\
f \text { is periodic in } x,  \tag{1.1b}\\
\left.f\right|_{t=0}=f_{0} \geqslant 0,  \tag{1.1c}\\
Q[f, g]=\frac{1}{2} \iint_{R^{3} \times S^{2}} q\left(\left|\xi-\xi^{\prime}\right|, \theta\right)\left\{f(\eta) g\left(\eta^{\prime}\right)+f\left(\eta^{\prime}\right) g(\eta)-f(\xi) g\left(\xi^{\prime}\right)\right.  \tag{1.2}\\
\left.\quad-f\left(\xi^{\prime}\right) g(\xi)\right\} d \xi^{\prime} d \omega .
\end{gather*}
$$

Here $f(\eta)=f(t, x, \eta)$, etc., while $\omega \in S^{2}, \cos \theta=\left(\omega, \xi-\xi^{\prime}\right) /\left|\xi-\xi^{\prime}\right|, \eta=\xi$ $+\left(\omega, \xi-\xi^{\prime}\right) \omega$ and $\eta^{\prime}=\xi^{\prime}-\left(\omega, \xi-\xi^{\prime}\right) \omega$. The assumption of the cut-off hard potential means, [2], that there exist constants $q_{0}, q_{1}>0,0 \leqslant \delta<1$ and for any $v>0$,

$$
\begin{equation*}
0 \leqslant q(v, \theta) \leqslant q_{0}|\cos \theta|\left(v+v^{-\delta}\right), \quad \int_{0}^{\pi} q(v, \theta) \sin \theta d \theta \geqslant q_{1} v(1+v)^{-1} \tag{1.3}
\end{equation*}
$$

Let $\Omega \subset \boldsymbol{R}^{3}$ be a fundamental rectangular domain of the periodicity condition. Let $g(\xi)=e^{-\left.1 \xi\right|^{2}}$ be a Maxwellian (Gaussian) distribution. With suitable changes of variables $x, \xi$ and $t$, we may assume that, with $\left\{h_{i}(\xi)\right\}_{i=1}^{5}=\left\{1, \xi_{1}, \xi_{2}, \xi_{3},|\xi|^{2}\right\}$,

$$
\begin{equation*}
\iint_{\Omega \times R^{3}} h_{i}(\xi) f_{0}(x, \xi) d x d \xi=\iint_{\Omega \times R^{3}} h_{i}(\xi) g(\xi) d x d \xi, \quad 1 \leq i \leq 5 \tag{1.4}
\end{equation*}
$$

Put $\psi_{i}=h_{i} g^{\frac{1}{2}}$. Define the (formal) operators $L$ and $\Gamma$ as

$$
\begin{equation*}
L u=g^{-\frac{1}{2}} Q\left[g^{\frac{1}{2}}, g^{\frac{1}{2}} u\right], \quad \Gamma[u, v]=g^{-\frac{1}{2}} Q\left[g^{\frac{1}{2}} u, g^{\frac{1}{2}} v\right] . \tag{1.5}
\end{equation*}
$$

Under the assumption (1.3), $L$ takes the form, [2],

$$
\begin{equation*}
L=\Lambda+K ; \Lambda u=-\nu(\xi) u, \quad K u=\int_{R^{3}} K\left(\xi, \xi^{\prime}\right) u\left(\xi^{\prime}\right) d \xi^{\prime} \tag{1.6}
\end{equation*}
$$

Noting that $Q[g, g]=0$, [2], we put $f=g+g^{\frac{1}{2}} u$ and rewrite (1.1) with $u=u(t, x, \xi)$ as

$$
\begin{gather*}
\frac{\partial u}{\partial t}=-\sum_{i=1}^{3} \xi_{i} \frac{\partial u}{\partial x_{i}}+\Gamma[u, u]  \tag{1.7a}\\
u \text { is periodic in } x,  \tag{1.7b}\\
\iint_{\Omega \times R^{3}} \psi_{i} u d x d \xi=0, \quad t \geqslant 0,1 \leq i \leq 5 \tag{1.7c}
\end{gather*}
$$

Here the additional constraints (1.7c) arise from the well-known conservation laws, [1], for (1.1).

Let $l \geq 0$ and let $H^{l}\left(T^{3}\right)$ be the Sobolev space on the torus $T^{3}=\boldsymbol{R}^{3} / \Omega$. We may admit a non-integer for $l$. Let us consider the Hilbert space $H_{l}$ of functions $u=u(x, \xi)$ defined as

$$
\begin{equation*}
H_{l}=L_{\xi}^{2}\left(\boldsymbol{R}^{3} ; H_{x}^{l}\left(T^{3}\right)\right), \quad(u, v)_{l}=\int_{R^{3}}(u(\cdot, \xi), v(\cdot, \xi))_{H_{x}^{l}\left(T^{3}\right)} d \xi . \tag{1.8}
\end{equation*}
$$

We define the operator $B$ in $H_{l}$ as

$$
\begin{equation*}
B=-\sum_{i=1}^{3} \xi_{i} \frac{\partial}{\partial x_{i}}+L, \tag{1.9}
\end{equation*}
$$

with $\mathscr{D}(B)=\left\{u \in H_{l} ; \sum_{i=1}^{3} \xi_{i} u_{x_{i}}+\nu(\xi) u \in H_{l}\right\}$ as the domain of definition. The following is a key theorem for our existence proof.

Theorem 1.1. Let $l \geqslant 0$, then,
(i) $B$ is a generator of a contraction semi-group $e^{t B}$.
(ii) $B$ has 0 as an eigenvalue with the five-dimensional eigenspace spanned by $\left\{\psi_{i}\right\}_{i=1}^{5}$. Denote its eigenprojection by $P$.
(iii) ${ }^{\exists} \mu>0,{ }_{\gamma}<\mu,{ }^{\exists} C_{r}>0,{ }^{\forall} t \geqslant 0,\left\|e^{t B}(I-P)\right\| \leqslant C_{r} e^{-\gamma t}$.

Once this theorem is proved, we can construct solutions of (1.7) by the iteration procedure by which Grad [1] obtained local solutions of (1.7) using only the estimate $\left\|e^{t_{B}}\right\| \leqslant 1$.

More precisely, we shall consider the Banach space $H_{l, \beta}$;

$$
\begin{align*}
H_{l, \beta} & =\left\{u(x, \xi) ;(1+|\xi|)^{\beta} u \in L_{\xi}^{\infty}\left(\boldsymbol{R}^{3} ; H_{x}^{l}\left(\boldsymbol{T}^{3}\right)\right\},\right.  \tag{1.10}\\
\|u\|_{l, \beta} & =\sup _{\xi \in R^{3}}(1+|\xi|)^{\beta}\|u(\cdot, \xi)\|_{H_{d x}^{l}\left(T^{3}\right)},
\end{align*}
$$

and think of $B$ of (1.9) as the operator in $H_{l, \beta}$ with $\mathscr{D}(B)=H_{l+1, \beta+1}$. We shall later see that $\Gamma[u, u] \in H_{l, \beta}$ whenever $u \in \mathscr{D}(B)$ if $l>0.5, \beta \geqslant 0$. We regard the mixed problem (1.7) as the evolution equation in $H_{l, \beta}$ with $l>0.5, \beta>1.5$;

$$
\begin{equation*}
\frac{d u(t)}{d t}=B u(t)+\Gamma[u(t), u(t)], \quad u(t) \in \operatorname{Ker}(P), \quad u(+0)=u_{0} \tag{1.11}
\end{equation*}
$$

where $d u / d t$ is the derivative of $u$ in the strong topology of $H_{l, \beta}$ and $\operatorname{Ker}(P)$ is the null space of the projection $P$ on $H_{l}$ defined in Theorem 1.1. Note that $H_{l, \beta} \subset H_{l}$ if $\beta>1.5$. Now, our existence theorem reads as

Theorem 1.2. Let $l \geqslant 0.5, \beta \geqslant 1.5, \varepsilon>0$ and $0<\gamma<\mu$. Then there exist positive constants $\alpha_{1}$ and $\alpha_{2}$ such that, if $u_{0} \in H_{l+1+\varepsilon, \beta+1+s} \cap \operatorname{Ker}(P)$ and if $\left\|u_{0}\right\|_{l+1+\varepsilon, \beta+1+\varepsilon} \leqslant \alpha_{1}$, then (1.11) has a unique solution
$u(t) \in L_{t}^{\infty}\left([0, \infty) ; H_{l+1+\varepsilon, \beta+1+\varepsilon}\right) \cap C_{t}^{0}\left([0, \infty) ; H_{l+1, \beta+1}\right) \cap C_{t}^{1}\left([0, \infty) ; H_{l, \beta}\right)$ satisfying
(1.12)
$\|u(t)\|_{l+1+\varepsilon, \beta+1+\varepsilon} \leq \alpha_{2} e^{-\gamma t}$.
Thus the solution $f$ of (1.1) tends to $g$ exponentially when $t \rightarrow \infty$.
2. Lemmas on collision operators. We denote by $\sigma(A)$ the spectrum of an operator $A$, and by $\sigma_{e}(A), \sigma_{p}(A), \sigma_{d}(A)$ the essential, point, discrete spectrum of $A$.

The conditions (1.3) and that $q$ is measurable lead to the following lemmas ([1], [2]),

Lemma 2.1. $\nu(\xi)$ is measurable on $R^{3}$ and $\nu_{0} \leq \nu(\xi) \leq \nu_{1}(1+|\xi|)$ with some positive constants $\nu_{0}, \nu_{1}$.

Lemma 2.2. (i) $K\left(\xi, \xi^{\prime}\right)$ is measurable and symmetric on $\boldsymbol{R}^{3} \times \boldsymbol{R}^{3}$.

$$
\begin{equation*}
{ }^{\forall} \beta \geq 0,{ }^{\exists} \kappa_{\beta}>0, \quad{ }^{\forall} \xi \in R^{3}, \int_{R^{3}}\left|K\left(\xi, \xi^{\prime}\right)\right|\left(1+\left|\xi^{\prime}\right|^{-\beta} d \xi^{\prime} \leq \kappa_{\beta}(1+\mid \xi)^{-\beta-1}\right. \tag{ii}
\end{equation*}
$$

(iii) ${ }^{\boldsymbol{3}} \kappa>0, \forall \xi \in \boldsymbol{R}^{3}, \int_{\boldsymbol{R}^{3}}\left|\nu(\xi)^{-1} K\left(\xi, \xi^{\prime}\right)\right|^{2} d \xi^{\prime} \leq \kappa$.

Lemma 2.3. (i) $L$ is self-adjoint, non-positive in $H_{l}$ with $\mathscr{D}(L)$ $=\mathscr{D}(\Lambda)=\left\{u \in H_{l} ; \nu(\xi) u \in H_{l}\right\}$.
(ii) For $L$ in $L_{\xi}^{2}\left(\boldsymbol{R}^{3}\right), 0 \in \sigma_{d}(L)$ with the eigenspace spanned by $\left\{\psi_{i}\right\}_{i=1}^{5}$.

Lemma 2.4. (i) For any $l>1.5$ and $\beta \geqslant 1, \Lambda^{-1} \Gamma[u, v]$ is bounded from $H_{l, \beta} \times H_{l, \beta}$ into $H_{l, \beta} ;{ }^{\exists} \eta_{l, \beta}>0,{ }^{\forall} u, v \in H_{l, \beta},\left\|\Lambda^{-1} \Gamma[u, v]\right\| \leqslant \eta_{l, \beta}\|u\|_{l, \beta}\|v\|_{l, \beta}$.
(ii) If $l>1.5, \beta>2.5$, and $u \in H_{l, \beta}$, then $\Gamma[u, u] \in \operatorname{Ker}(P)$. (Note that $\Gamma[u, u]=\Lambda \Lambda^{-1} \Gamma[u, u] \in H_{l, \beta-1} \subset H_{l}$ since $\beta-1>1.5$.)
3. Outline of the proof of Theorem 1.1. In this section we think of $\Lambda, K$ and $L$ as operators in $H_{l}$. Define the operator $A_{0}$ as

$$
\begin{equation*}
\mathscr{D}\left(A_{0}\right)=\left\{u \in H_{1} ; \sum_{i=1}^{3} \xi_{i} u_{x_{i}} \in H_{l}\right\}, \quad A_{0}=-\sum_{i=1}^{3} \xi_{i} \frac{\partial}{\partial x_{i}} . \tag{3.1}
\end{equation*}
$$

It is anti-self-adjoint and generates a unitary group $e^{t A_{0}}$. Moreover, $\sigma\left(A_{0}\right)=i \boldsymbol{R}$ and $\sigma_{p}\left(A_{0}\right)=\{0\}$, corresponding eigenfunctions being constant in $x$. Since the $C_{0}$-semigroup $e^{t \Lambda}$ exists, $\left\|e^{t \Lambda}\right\| \leqslant e^{-\nu_{0} t}$, and since $A_{0}$ and $\Lambda$ commute, $e^{t \Lambda} e^{t A_{0}}$ form a $C_{0}$-semigroup, [3]. Denote its generator as A. It is not difficult to show

Lemma 3.1. (i) $A=A_{0}+\Lambda, \mathscr{D}(A)=\mathscr{D}\left(A_{0}\right) \cap \mathscr{D}(A)$. (ii) $\left\|e^{t A}\right\| \leqslant e^{-\nu_{0} t}$. (iii) $\sigma(A)=\sigma_{e}(A)=\left\{\lambda ; \operatorname{Re} \lambda=-\nu(\xi), \xi \in \boldsymbol{R}^{3}\right\}$.

Thus the resolvent $(\lambda-A)^{-1}$ exists if $\operatorname{Re} \lambda>-\nu_{0}$. The following is a key to the proof of Theorem 1.1.

Lemma 3.2. Let $l \geqslant 0$. (i) $K(\lambda-A)^{-1}$ is compact on $H_{l}, \operatorname{Re} \lambda>\nu_{0}$.
(ii) For any $\beta>-\nu_{0},\left\|K(\lambda-A)^{-1}\right\| \rightarrow 0(|\lambda| \rightarrow \infty)$ uniformly for $\lambda, \operatorname{Re} \lambda \geqslant \beta$. The proof is carried out with the aid of the Fourier series repre-
sentation of $u \in H_{l}$ and
Lemma 3.3. $\Lambda^{-1} K$ and consequently $K \Lambda^{-1}$ is compact on $L_{\xi}^{2}\left(\boldsymbol{R}^{3}\right)$.
Let us define the operator $B$ as

$$
\begin{equation*}
B=A+K=A_{0}+L, \quad \mathscr{D}(B)=\mathscr{D}(A)=\mathscr{D}\left(A_{0}\right) \cap \mathscr{D}(L) . \tag{3.2}
\end{equation*}
$$

Since $K$ is bounded, $B$ is a generator of $C_{0}$-semigroup $e^{t B}$, and owing to Lemma 2.3, $B$ is dissipative. Therefore we see

Theorem 3.1. $B$ is maximally dissipative.
As a consequence, $\sigma(B) \subset\{\lambda ; \operatorname{Re} \lambda \leq 0\}$. On the other hand Lemma 3.2, (i) implies that $K$ is $A$-compact, [4], so that $\sigma_{e}(B)=\sigma_{e}(A)$ and each $\lambda \in \sigma_{d}(B)$ is a pole of the resolvent $(\lambda-B)^{-1}$. Moreover,

Theorem 3.2. (i) For any $\beta>-\nu_{0}, \sigma_{d}(B) \cap\{\lambda ; \operatorname{Re} \lambda \geqslant \beta\}$ is a finite set. (ii) ${ }^{\exists} \mu>0, \sigma_{d}(B) \backslash\{0\} \subset\{\lambda ; \operatorname{Re} \lambda \leq-\mu\}$. (iii) $0 \in \sigma_{d}(B)$ with the eigenspace spanned by $\left\{\psi_{i}\right\}_{i=1}^{5}$, and is a simple pole of $(\lambda-B)^{-1}$.

Proof. (i) follows from Lemma 3.2, (ii). Suppose $\gamma \in \boldsymbol{R}^{1}, i \gamma \in \sigma_{d}(B)$, and let $u$ be a corresponding eigenfunction; $B u=i \gamma u$. Then $\left(A_{0} u, u\right)_{l}$ $+(L u, u)_{l}=i \gamma(u, u)_{l}$ whence $L u=0$ by the non-positivity of $L$ and $A_{0} u$ $=i \gamma u$, i.e., $i \gamma \in \sigma_{p}\left(A_{0}\right)=\{0\}$. This and (i) imply (ii).

The Fourier series representation gives
Lemma 3.4. Write $\lambda=\beta+i \gamma$. For any $\beta>-\nu_{0}, u \in H_{l}$,

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left\|(\lambda-A)^{-1} u\right\|_{l}^{2} d \gamma \leqslant \frac{\pi}{\beta+\nu_{0}}\|u\|_{l}^{2} \\
& \int_{-\infty}^{\infty}\left\|\left(\lambda-A^{*}\right)^{-1} u\right\|_{l}^{2} d \gamma \leqslant \frac{\pi}{\beta+\nu_{0}}\|u\|_{l}^{2} . \tag{3.3}
\end{align*}
$$

Since $\mathscr{D}(B)=\mathscr{D}(A)$, the second resolvent equation holds, giving

$$
\begin{align*}
(\lambda-B)^{-1} & =(\lambda-A)^{-1}+\tilde{Z}(\lambda) ; \\
\tilde{Z}(\lambda) & =(\lambda-A)^{-1}\left(I-K(\lambda-A)^{-1}\right)^{-1} K(\lambda-A)^{-1}, \tag{3.4}
\end{align*}
$$

and, since both $e^{t B}$ and $e^{t A}$ are $C_{0}$-semigroups, we have, by the inverse Laplace transformation, for any $\beta_{0}>0$,

$$
\begin{equation*}
e^{t B} u=e^{t A} u+s-\lim _{a \rightarrow \infty} \frac{1}{2 \pi i} \int_{\beta_{0}-i a}^{\beta_{0}+i a} e^{\lambda t} \tilde{Z}(\lambda) u d \lambda, \quad t>0, u \in \mathscr{D}(B) . \tag{3.5}
\end{equation*}
$$

Define the integral

$$
\begin{equation*}
Z_{\beta}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i r t} \tilde{Z}(\beta+i \gamma) d \gamma . \tag{3.6}
\end{equation*}
$$

Lemmas 3.2 and 3.4 lead to
Lemma 3.5. Let $\beta>-\nu_{0}$ be such that $\lambda \notin \sigma_{d}(B)$ for all $\lambda, \operatorname{Re} \lambda=\beta$.
(i) The integral $Z_{\beta}(t)$ converges absolutely in the weak operator topology of $H_{l}$. (ii) ${ }^{\boldsymbol{3}} C_{\beta}>0,{ }^{\forall} t \geqslant 0,\left\|Z_{\beta}(t)\right\| \leqslant C_{\beta}$.

Theorem 3.3. Let $-\mu<\beta<0$, then

$$
\begin{equation*}
e^{t B}=e^{t \dot{A}}+e^{\beta t} Z_{\beta}(t)+P, \quad t \geqslant 0 . \tag{3.7}
\end{equation*}
$$

Proof. Lemma 3.2, (ii) allows us to shift the integration path in (3.5) to the line $\operatorname{Re} \lambda=\beta$, and $\operatorname{Res}_{\lambda=0} e^{\lambda t} \tilde{Z}(\lambda)=\operatorname{Res}_{\lambda=0} e^{\lambda t}(\lambda-B)^{-1}=P$ by Theorem 3.2, (iii).

Now, Theorem 1.1 follows from Theorems 3.1, 3.2, 3.3 and Lemma 3.5, (ii).
4. Outline of the proof of Theorem 1.2. Let $\varepsilon>0$. Define
$S_{l, \beta, \varepsilon}=L_{t}^{\infty}\left([0, \infty) ; H_{l+1+\epsilon, \beta+1+\varepsilon}\right) \cap C_{t}^{0}\left([0, \infty) ; H_{l+1, \beta+1}\right) \cap C_{t}^{1}\left([0, \infty) ; H_{l, \beta}\right)$, and put, with $\gamma \in \boldsymbol{R}^{1}$,

$$
\begin{equation*}
\|u\|=\|u\|_{l+1+\varepsilon, \beta+1+\varepsilon}, \quad|u|_{r}=\sup _{t \geqslant 0} e^{r t}\|u(t)\| . \tag{4.1}
\end{equation*}
$$

In this section we think of operators $\Lambda, K, A$ and $B$ in $H_{l, \beta}$ with $\mathscr{D}(\Lambda)=\mathscr{D}(A)=\mathscr{D}(B)=H_{l+1, \beta+1}$. The operators $e^{t A}$ of the previous section form a semigroup also on $H_{l, \beta}$, though it is neither strongly continuous nor has $A$ as a generator. Nevertheless, we can show

Lemma 4.1. Let $u_{0} \in H_{l+1+\varepsilon, \beta+1+\varepsilon}, \varepsilon>0$, and put $\varphi(t)=e^{t A} u_{0}$.
(i) $\varphi(t) \in S_{l, \beta, s}$. (ii) $\|\varphi(t)\| \leqslant e^{-\nu_{0} t}\left\|u_{0}\right\|$. (iii) $\varphi^{\prime}(t)=A \varphi(t)$ where $\varphi^{\prime}(t)$ is the derivative of $\varphi(t)$ in the strong topology of $H_{l, \beta}$.

The following lemma plays an essential role for our purpose, the assertion (ii) of which is due to Grad [1].

Lemma 4.2. Let $f(t) \in S_{l, \beta, \varepsilon}$ and define $\chi(t)=\int_{0}^{t} e^{(t-s) A} \Lambda f(s) d s$.
(i) $\quad \chi(t) \in S_{l, \beta, \varepsilon} . \quad$ (ii) $\quad \forall_{\gamma}<\nu_{0},|\chi|_{r} \leqslant \max \left(1, \frac{\nu_{0}}{\nu_{0}-\gamma}\right)|f|_{r}$.
(iii) $\quad \chi^{\prime}(t)=A \chi(t)+\Lambda f(t)$, in $H_{l, \beta}$.

Put $w(t)=\varphi(t)+\chi(t)$ and consider the integral equation

$$
\begin{equation*}
u(t)=w(t)+\int_{0}^{t} e^{(t-s) 4} K u(s) d s \tag{4.3}
\end{equation*}
$$

Using the Neumann series, we easily see
Lemma 4.3. Let $u_{0}$ and $f(t)$ be as in Lemmas 4.1 and 4.2. Then, (4.3) has a unique solution $u(t) \in S_{l, \beta, \text {, }}$, which is also a unique solution within $S_{l, \beta, c}$ of the equation

$$
\begin{equation*}
u^{\prime}(t)=B u(t)+\Lambda f(t), \quad \text { in } H_{l, \beta} ; u(+0)=u_{0} . \tag{4.4}
\end{equation*}
$$

By virtue of Theorem 1.1, (iii), we can show, using the arguments given in [1],

Lemma 4.4. Let $l \geqslant 0, \beta \geqslant 1.5, \gamma<\nu_{0}$, and let $u_{0}, f(t)$ and $u(t)$ be those of the previous lemma. Suppose, further, that $u_{0}, \Lambda f(t) \in \operatorname{Ker}(P)$, then, with some positive constants $a=a_{l, \beta, \gamma, \varepsilon}$ and $b=b_{l, \beta, r, e}$, we have $u(t) \in \operatorname{Ker}(P)$ and

$$
\begin{equation*}
|u|_{r} \leqslant a\left\|u_{0}\right\|+b|f|_{r} . \tag{4.5}
\end{equation*}
$$

Proof of Theorem 1.2. Let $l \geqslant 0.5, \beta \geqslant 1.5, \varepsilon>0$ and let $u_{0} \in H_{l+1+\varepsilon, \beta+1+\varepsilon} \cap \operatorname{Ker}(P)$. Consider the integral equation

$$
\begin{equation*}
u(t)=e^{t A} u_{0}+\int_{0}^{t} e^{(t-s) 4} K u(s) d s+\int_{0}^{t} e^{(t-s) A} \Gamma[u(s), u(s)] d s \tag{4.6}
\end{equation*}
$$

which we solve by the iteration

$$
\begin{equation*}
u^{n}(t)=e^{t A} u_{0}+\int_{0}^{t} e^{(t-s) A} K u^{n}(s) d s+\int_{0}^{t} e^{(t-s) A} \Gamma\left[u^{n-1}(s), u^{n-1}(s)\right] d s \tag{4.7}
\end{equation*}
$$

for $n \geqslant 1$ aud $u^{0}(t)=0$. Lemmas 2.4 and 4.4 imply $u^{n}(t) \in S_{l, \beta, \varepsilon} \cap \operatorname{Ker}(P)$ and for $0 \leq \gamma<\nu_{0}$, with $\eta=\eta_{l+1+\varepsilon, \beta+1+\delta}$,

$$
\begin{equation*}
\left|u^{n}\right|_{r} \leqslant a\left\|u_{0}\right\|+b \eta\left|u^{n-1}\right|_{r}^{2} \tag{4.8}
\end{equation*}
$$

Choose $\alpha_{1}$ and $\alpha_{2}$ as

$$
\begin{equation*}
0<\alpha_{1}<\frac{1}{4 a b \eta}, \quad \alpha_{2}=\frac{1}{2 b \eta}\left(1-\sqrt{1-4 a b \eta \alpha_{1}}\right) \tag{4.9}
\end{equation*}
$$

Let $\left\|u_{0}\right\| \leqslant \alpha_{1}$, then $\left|u^{n}\right|_{r} \leqslant \alpha_{2}$, from (4.8). Similarly, we can get

$$
\text { (4.10) } \quad\left|u^{n+1}-u^{n}\right|_{r} \leqslant 2 b \eta \alpha_{2}\left|u^{n}-u^{n-1}\right|_{r}, \quad n \geqslant 1
$$

whence $u^{n}(t)$ converges in $H_{l+1+\epsilon, \beta+1+\varepsilon}$ to some $u(t) \in L_{t}^{\infty}\left([0, \infty) ; H_{l+1+\varepsilon, \beta+1+\varepsilon}\right)$ $\cap C_{t}^{0}\left([0, \infty) ; H_{l+1, \beta+1}\right) \cap \operatorname{Ker}(P)$ uniformly in $t$, and $|u|_{r} \leqslant \alpha_{2}$. It is not difficult to see that this $u(t)$ is a desired solution of (1.11).

A more detailed exposition will be presented elsewhere.
Acknowledgement. The author would like to express his gratitude to Professor Y. Shizuta and Professor K. Asano for their valuable suggestions and to Professor M. Yamaguchi for his continuous encouragement.

## References

[1] Grad, H.: Proc. Symp. in Appl. Math., 17, 154-183 (1965).
[2] -: Rarefied Gas Dynamics, I, 26-59 (1963).
[3] Trotter, H. F.: Proc. Am. Math. Soc., 10, 545-551 (1959).
[4] Kato, T.: Perturbation Theory of Linear Operators. Springer (1966).

