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1. Let E be a Banach space with the dual space E*. The norms
in E and E* are denoted by |||. We denote by S(u, ) the closed sphere
of center u with radius 7.

It is our object in this note to give a sufficient condition for the
existence of the unique solution to the Cauchy problem of the form
1.1) w (&)= f (¢, ut)), w0)=u,c K,
where f is a F-valued mapping defined on [0, T'] X S(u,, 7).

We compare the differential equation (1.1) with the scalar equation
1.2) w' () =9(t, w®),
where g(t, w) is a function defined on (0, a] x [0, b] which is measurable
in ¢t for fixed w, and continuous monotone nondecreasing in w for fixed
t. We say w is a solution of (1.2) on an interval I contained in [0, a]
if w is absolutely continuous on I and if w’(t)=g(¢, w(t)) fora.e. tel°,
where I° is the set of all interior points of I.

We assume that g satisfies the following conditions:

There exists a function m defined on (0,a) such that g(¢t, w)

(i) =m(@) for (¢, w) e (0,a)x[0,b] and for which m is Lebesgue

integrable on (¢, @) for every ¢>0.
For each ¢,¢ (0,a]l, w=0 is the only solution of the equation

(i) (1.2) on [0, ¢,] satisfying the conditions that w(0) =(D*w)(0)=0,

where D*w denotes the right-sided derivative of w.

2. Let g be as in Section 1. Then we have the following lemmas.

Lemma 2.1. Let {w,} be a sequence of functions from [0,a] to
[0, b] converging pointwise on [0, a] to a function w,. Let M>0 such
that |w,(t) —w,(8)| <M |t—s| for s,t e [0,a] and n=1. Suppose further
that for each n=1

wy,(B) = 9(t, w,(t) for te(0,a)
such that w(t) exists. Then w, is a solution of (1.2) on [0, al.

For a proof see [4].

Lemma 2.2. Let M>0 and let {w,} be a sequence of functions
from [0, a] to [0, b] with the property that |w,(t)—w,(8)|SM|t—s| for
all s,te[0,a] and n=1. Let w=sup,s, w,, and suppose that w,(t)
<g@,w,(®) for te(0,a) such that w,(t) exists. Then w is a solution
of (1.2) on [0, a].
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For a proof see [2].

Lemma 2.3. Let w be an absolutely continuous function from
[0,a] to [0,b] such that w(0)=(D*w)(0)=0 and w9, wEt)) for
t € (0, a) such that w'(t) exists. Then w=0 on [0, al.

The proof of this lemma is quite similar to that of Theorem 2.2 in
[1] and is omitted.

3. For each u in E let F'(u) denote the set of all * in E* such
that (u, 2*)=||u|?=| z*|?, where (u, *) denotes the value of x* at u.

Theorem. Let f be a strongly continuous mapping of [0,T]
X S(uy, 1) into E such that
3.1 2Re (ft,w—f(t, ), x*) =g, |lu—2|)
for (t,u), (t,v) e (0, T1XS(uy 1) and for some x* e F(u—v), where g
satisfies the conditions in Section 1 with a=T and b=Max {4r%, 8rMT}.
Then (1.1) has a unique strongly continuously diff erentiable solution u
defined on some interval [0, T,].

Proof. Since f is strongly continuous on [0, 71X S(u, 1) there
exist constants 0<r,<r, 0<T,<T and M >0 such that || f(t,w) | <M for
&, w) e [0, T,1 xS(uy, 7). Let Ty=Min{r,/M,T,} and let n be a positive
integer. We set t2=0, and u,(t9)=u, Inductively, for each positive
integer 7, define 67, 7, u,(t?) as follows:

(3.2) 720, 40T,

If

(3.3 |[v—u, )| <Mé? and |E—tr,|<5?,
then || f(¢, v) — F (&1, u, (8D | =1/

(3'4) ” un(t?-l) — Uy ” é Y

and o7 is the largest number such that (3.2) to (3.4) hold. Define ¢?
=1?_,+ 07 and define for each ¢ e [t?_,, t7]

3.5) wO=u )+ [ 7 untrDds.

Then we have

3.6)  [u, WD) —u ) |=M|t—s|, [u,®)—usl|=r,  for s, tel0, Ty,
and t% =T, for some positive integer N=N(n). For some detail see [6]
and [3].

Let w,,,(8) = Un(t) —u, @) | for m>n>1 and t e [0, T,]. Obviously
Wipa(0)=0, and |W,,(&) —w,,(8) | 8r.M |t—s| for s, t € [0, T,]. For each
t € (0, Ty) there exist positive integers ¢ and 7 such that ¢ e (¢t7-,, t7) and
te(t?_,,t%). By Lemma 1.3 in [5] and (8.5) we have
W) =2 Re (ur, () —uy (1), %,(1))

=2 Re (f (€, un(t]-)) — f (&, u,(t7-), 2%.(1))
=9 WD) +2( /M +1/7) | (8) —u, (D) |
§g(t, wmn(t)) + 870/”
for a.e. t € (0, T) and for some x¥,(t) € F'(u,(t) —u,(t)).
Let w,()=supn,s, Wy,(t) for t [0, T,]. Then obviously w,(0)=0

3.7
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for n=1. By Lemma 2.2 and (3.7) we have

8.8) [w, (&) —w,(9)|<8r, M [t—s| for s,te [0, T,],
and
3.9) wy(t)=g(t, w,(t)) +8ry/n for a.e. te (0, T,).

On the other hand, 0 < w,(t) < w,(0) + 8rMt < 8, MT, for n=1 and
tel[0,T,]. Thus the sequence {w,} is equicontinuous and uniformly
bounded, and hence it has a subsequence {w,,} converging uniformly
on [0, T,] to a function w, and obviously w(0)=0. It follows from (3.9)
and Lemma 2.1 that w'(£)=9(, w(t)) for a.e. t e (0, T,).
We shall next show that (D*w)(0)=0. Since f is continuous at
0, uy), given ¢>0 we can find § >0 such that || /(¢, v) — (0, u,) || <e when-
ever 0=t<¢J and ||u—u,|=d. Let §,=Min{s,d/M}. Then, by (3.6),
|u,(®) — u,)| <6, for all » and te[0,5,], and therefore | f (¢, u,(t)
— f(t, u,(t) || <2 whenever m>n>1 and tec[0,d]. By (3.3) and (8.7)
we have
Wi () =2 Re (f (¢, un(]-)) — F (&, u,(7-0), 2%.(1))
<A1y | £t (7)) — F(Ey 10,7 | < 8roe+1/m)
for a.e. te(0,4d,),
and hence, by integrating the above inequality, we have
0=w,, () Z8ry(e+1/n)E,
whence (D*w)(0)=0. From Lemma 2.3, we deduce now that w=0,
and this implies that the sequence {,} is uniformly convergent on
[0, Ty]. The limit of this sequence satisfies

u(t)=u0+j: F(s,u(s)ds  for te 0, T,]

(see [3]). Consequently « is a strongly continuously differentiable
solution of (1.1) on [0, T'].

Let v be another strongly continuously differentiable solution of
1.1 on [0,T,]. Let 2(t)=||u®)—v@|’. Then obviously 2(0)=0, and
() =2Re (f(t, u(®)— 1, (), x*{®) < 9(t, (1))
for a.e. t e (0, T,) and for some x*(t) ¢ F(u(t)—v(t)). The fact (D*z)(0)
=0 follows from 0=<2(¢)/t=t || (u(t) —v(t))/t|*—0 as t|0. Therefore by

Lemma 2.3 2=0, and the proof is complete.

References

[1] E. Coddington and N. Levinson: Theory of Ordinary Differential Equa-
tions. New York (1955).

[2] T. M. Flett: Some applications of Zygmunds lemma to nonlinear differen-
tial equations in Banach and Hilbert spaces. Studia Math. Tom XLIV
(1972).

[38]1 8. Kato: On nonlinear differential equations in Banach spaces (to appear).

[4] Some remarks on nonlinear differential equations in a Banach space
(to appear).




316 S. KaTo [Vol. 50,

[6] T. Kato: Nonlinear semi-groups and evolution equations. J. Math, Soc.
Japan., 19, 508-520 (1967).

[6] G. Webb: Continuous nonlinear perturbations of linear accretive operators
in Banach spaces. J. Func. Anal,, 10, 191-203 (1972).



