No. 4]

65. On an Invariant of Veronesean Rings

By Tadayuki MATSUOKA

Department of Mathematics, Ehime University

(Comm. by Kunihiko KODAIRA, M. J. A., April 18, 1974)

§ 1. Main result. Let K be a field and t_1, \dots, t_n indeterminates. Let m be a positive integer. In this paper we consider the ring $R_{n,m}$ generated, over K, by all the monomials $t_1^{p_1} \dots t_n^{p_n}$ such that $\sum_{i=1}^n p_i = m$. Let $S_{n,m}$ be the localization of $R_{n,m}$ at the maximal ideal generated by all $t_1^{p_1} \dots t_n^{p_n}$ in $R_{n,m}$. In [2] Gröbner showed that the local ring $S_{n,m}$ is a Macaulay ring of dimension n. In this paper this ring is called a Veronesean local ring.

In general, it is well known that in a Macaulay local ring the number of the irreducible components of an ideal generated by a system of parameters is an invariant of the ring. This invariant is called the type of the ring (cf. [4]). A Macaulay local ring is a Gorenstein ring if and only if the ring has type one.

The aim of this paper is to prove the following theorem.

Theorem. Let
$$S_{n,m}$$
 be a Veronesean local ring. Then
type $S_{n,m}=1$ if $n\equiv 0 \pmod{m}$

and

type
$$S_{n,m} = {n+m-r-1 \choose n-1}$$
 if $n \equiv r \pmod{m} \quad 0 < r < m$.

As a direct consequence of the theorem, we have the following

Corollary. A Veronesean local ring $S_{n,m}$ is a Gorenstein ring if and only if n=1 or $n\equiv 0 \pmod{m}$.

§ 2. Proof of theorem. For a non-negative integer s, we denote by P(s) the set of ordered n-tuples $(p) = (p_1, \dots, p_n)$ of non-negative integers p_i such that $\sum_{i=1}^n p_i = sm$. We also denote by $t^{(p)}$ the monomial $t_1^{p_1} \dots t_n^{p_n}$. With the same notation as in § 1, the ring $R_{n,m} = K[t^{(p)}|(p) \in P(1)]$. Let m be the maximal ideal generated by all $t^{(p)}$, $(p) \in P(1)$, and q the ideal generated by t_1^m, \dots, t_n^m . Then q is an m-primary ideal. Since the localization $S_{n,m}$ of $R_{n,m}$ at m is a Macaulay local ring of dimension n and since $\{t_1^m, \dots, t_n^m\}$ is a maximal regular sequence of $S_{n,m}$ (cf. [2]), the type of $S_{n,m}$ is given by the dimension of the K-vector space (q:m)/q (cf. [4]).

Before proving some lemmas we give preliminary remarks: A monomial $t^{(p)}$ is in $R_{n,m}$ if and only if (p) is in P(s) for some s. If (p)

T. MATSUOKA

is in P(s), then $t^{(p)}$ is in \mathfrak{m}^s . The ideal \mathfrak{m}^s is generated by all $t^{(p)}$, $(p) \in \mathbf{P}(s)$. Let Q(s) be the set consisting of all (p) in P(s) such that $p_i < m$ for $1 \le i \le n$. Let (p) be in P(s). Then $t^{(p)}$ is in q if and only if (p) is not in Q(s). Hence $\mathfrak{m}^s \subseteq \mathfrak{q}$ if and only if Q(s) is the empty set.

Lemma 1. Assume that $n \ge 2$ and $m \ge 2$. Let k be the integer such that $n-n/m < k \le n-n/m+1$. Then $\mathfrak{m}^k \subseteq \mathfrak{q}$ and $\mathfrak{m}^{k-1} \not\subseteq \mathfrak{q}$.

Proof. Let (p) be in P(k). Then $\sum_{i=1}^{n} p_i = km > (m-1)n$. Hence $p_j \ge m$ for some j. This shows that $m^k \subseteq q$. Next we show that $m^{k-1} \not\subseteq q$. In order to prove this it is enough to show that Q(k-1) is not the empty set. First we consider the case when $n \ge m$. Let d = (m-1)n - (k-1)m. Then d is a non-negative integer. Since $n \ge m$ and km - (m-1)n > 0, we have n-d=n-m+km-(m-1)n>0. If d=0, we set $p_i=m-1$ for $1\le i\le n$. If d>0, we set $p_i=m-2$ for $1\le i\le d$ and $p_i=m-1$ for $d+1\le i\le n$. Then (p) is in Q(k-1). Next we consider the case when m>n. In this case we have k=n. Let m=qn+w, $0\le w < n$. Set $p_1=(n-1)q$ and $p_i=(n-1)q+w$ for $2\le i\le n$. Then (p) is in Q(k-1). Hence in any case Q(k-1) is not the empty set. q.e.d.

We remark that if $n \ge 2$ and $m \ge 2$, then the integer k in Lemma 1 is not less than 2.

Lemma 2. Assume that $n \ge 2$ and $m \ge 2$. Let k be the same integer as in Lemma 1. If $s \le k-2$, then for each (p) in Q(s) there exists (u) in P(1) such that $p_i + u_i < m$ for $1 \le i \le n$.

Proof. Set $q_i = m - p_i$. Then $0 < q_i \le m$ and $\sum_{i=1}^n (q_i - 1) = (n - s)m$ $-n \ge (n - k + 2)m - n \ge m$. Hence we can choose integers u_i so that $q_i - 1 \ge u_i \ge 0$ and $\sum_{i=1}^n u_i = m$. Then $p_i + u_i < m$. q.e.d.

Lemma 3. Assume that $n \ge 2$ and $m \ge 2$. Let k be the same integer as in Lemma 1. Then $q: m = q + m^{k-1}$.

Proof. Since $\mathfrak{m}^{k} \subseteq \mathfrak{q}$ by Lemma 1, we have $\mathfrak{q} + \mathfrak{m}^{k-1} \subseteq \mathfrak{q} : \mathfrak{m}$. We show the opposite inclusion. Let x be an element in $\mathfrak{q} : \mathfrak{m}$. We can write $x = \sum a_{(p)} t^{(p)} + y$, where y is an element in $\mathfrak{q} + \mathfrak{m}^{k-1}$, $a_{(p)}$ are elements in K and the sum \sum is taken for all (p) in $Q = \bigcup_{j=0}^{k-2} Q(j)$. We show that $a_{(p)} = 0$ for all (p) in Q. Let (q) be in Q. Then by Lemma 2 there exists (v) in P(1) such that $q_i + v_i < m$ for $1 \le i \le n$. Let Q' be the set consisting of all (p) in Q such that $p_i + v_i < m$ for $1 \le i \le n$. Since $x\mathfrak{m} \subseteq \mathfrak{q}$ and $y\mathfrak{m} \subseteq \mathfrak{q}$ by Lemma 1, $\sum' a_{(p)} t^{(p+v)}$ is in \mathfrak{q} , where the sum \sum' is taken for all (p) in Q'. Therefore we have $a_{(p)} = 0$ for all (p) in Q', and hence $a_{(q)} = 0$. This shows that x is in $\mathfrak{q} + \mathfrak{m}^{k-1}$.

Before proving the theorem, we remark that if $\mathfrak{m}^{h+1}\subseteq\mathfrak{q}$, then the dimension of the K-vector space $(\mathfrak{q}+\mathfrak{m}^h)/\mathfrak{q}$ is equal to the number of elements of Q(h).

288

Proof of theorem. For n=1 or m=1, $S_{n,m}$ is a regular local ring, hence it is a Gorenstein ring, that is, type $S_{n,m}=1$. Therefore it is enough to prove the theorem for $n \ge 2$ and $m \ge 2$. In case when $n \equiv 0$ (mod. m): Let n=mq. Then the integer k in Lemma 1 is equal to (m-1)q+1. Since $\sum_{i=1}^{n} p_i = (m-1)qm = (m-1)n$ for (p) in P(k-1), Q(k-1) consists of only one tuple $(m-1, \dots, m-1)$. Hence by Lemma 3 we have type $S_{n,m}=1$. In case when $n \equiv r \pmod{m}$ or 0 < r < m: Let n = mq + r. Then k = (m-1)q + r. Let Q' be the set of n-tuples $(q) = (q_1, \dots, q_n)$ such that $q_i \ge 0$ for $1 \le i \le n$ and $\sum_{i=1}^{n} q_i = m - r$. Since $\sum_{i=1}^{n} (m-1-p_i)=m-r$ for every (p) in Q(k-1), the map $Q(k-1) \rightarrow Q'$ defined by $(p) \mapsto (q), q_i = m - 1 - p_i$, is a bijection. Hence type $S_{n,m}$ is equal to the number of elements of Q'. Obviously it is equal to $\binom{n+m-r-1}{n-1}$.

Remark. If the ground field K has characteristic zero, $R_{n,m}$ is the ring of invariants of a cyclic group of order m acting on $K[t_1, \dots, t_n]$. In this case, our results are closely related to K. Watanabe [5] and [6].^{*)}

§ 3. Supplementary results. In this section we give some results on the connection between the type, the embedding dimension and the dimension of a Veronesean local ring. Let T be the polynomial ring over K, in $\binom{n+m-1}{n-1}$ indeterminates $X_{(p)}, (p) \in P(1)$. Let $\phi: T \rightarrow R_{n,m}$ be the ring homomorphism defined by $\phi(X_{(p)}) = t^{(p)}$. Let S be the localization of T at the maximal ideal of T generated by all $X_{(p)}, (p) \in P(1)$. Since the kernel of ϕ is generated by all $X_{(p)}X_{(q)} - X_{(u)}X_{(v)}, p_i + q_i = u_i$ $+ v_i$ for $1 \le i \le n$ (cf. [2]), the local homomorphism $\psi: S \rightarrow S_{n,m}$ induced by ϕ is a minimal embedding of $S_{n,m}$, that is, the kernel of ψ is contained in the square of the maximal ideal of S. Hence the embedding dimension of $S_{n,m}$ is equal to $\binom{n+m-1}{n-1}$. We first note that $S_{n,m}$ is a regular local ring if and only if n=1 or m=1. This follows from the fact that $S_{n,m}$ is regular if and only if $\binom{n+m-1}{n-1} = n$. In [2] Gröbner showed that the kernel of ϕ , and hence the kernel of ψ , are minimally generated by $c = \binom{e+1}{2} - \binom{2m+n-1}{n-1}$ elements, where e is the embedding dimension of $S_{n,m}$, that is, $e = \binom{n+m-1}{n-1}$.

^{*)} Especially, in the characteristic zero case, the theorem in \$1 is an easy consequence of Lemma 6 in [5] or of Lemma 7 in [6]. In the positive characteristic case, however, the theorem is not contained in [5] and [6].

is a complete intersection if and only if c=e-n. We now show the following

Proposition 1. A Veronesean local ring $S_{n,m}$ which is not a regular local ring is a complete intersection if and only if n=m=2.

Proof. If n=m=2, then c=e-n=1. Hence $S_{2,2}$ is a complete intersection. Conversely assume that $(n,m) \neq (2,2)$. By the corollary in §1 we may, furthermore, assume that n=mq for some positive integer q. Write $\binom{2m+n-1}{n-1} = de$, where $d = \prod_{i=1}^{m} (2m+n-i)/(2m+1-i)$. Since (n+m-i)/(m+1-i) > (2m+n-i)/(2m+1-i) for $1 \le i \le m-1$ and since $n-2(n+m)/(m+1) = m\{q(m-1)-2\}/(m+1) \ge 0$, we have e-2d > 0. Therefore we have c-e+n = (e/2)(e-2d-1)+n > 0. This shows that $S_{n,m}$ is not a complete intersection. q.e.d.

If $n \ge 3$ and $m \ge 2$ and if $n \equiv 0 \pmod{m}$, then $S_{n,m}$ is an example of an *n*-dimensional normal Gorenstein local domain which is not a complete intersection.

Proposition 2. If a Veronesean local ring $S_{n,m}$ is not a regular local ring, then the following inequality holds;

emdim $S_{n,m}$ -dim $S_{n,m} \ge$ type $S_{n,m}$.

Proof. Since emdim $S_{n,m} - \dim S_{n,m} > 0$, the inequality obviously holds when $n \equiv 0 \pmod{m}$. Consider the case when $n \equiv r \pmod{m}$ 0 < r < m. Since, in general, $\binom{s+1}{t+1} = \sum_{i=i}^{s} \binom{i}{t}$, we have $\binom{n+m-1}{n-1} = \binom{n+m-r-1}{n-1} + h$, where $h = \sum_{i=1}^{r} \binom{n+m-i-1}{n-2}$. If n=2, then r=2and m > 2. Hence h = n = 2. If n > 2, then $h \ge \binom{n+m-r-1}{n-2} \ge \binom{n-1}{n-2} + 1 = n$. Therefore we have $\binom{n+m-1}{n-1} - n \ge \binom{n+m-r-1}{n-1}$ for $n \ge 2$ and $m \ge 2$, and this is the required inequality. q.e.d.

Remark. In general, for a Macaulay local ring R, the following inequalities hold: (1) multiplicity $R \ge \text{emdim } R - \dim R + 1$ (Abhyankar 1]); (2) multiplicity $R \ge \text{type } R + 1$ if R is not regular (Engelken, cf. [3]). For a Macaulay local ring R which is not regular, the inequality emdim $R - \dim R \ge \text{type } R$ does not hold in general. In fact, consider the ring $R = K[X, Y]/(X, Y)^t, t \ge 2$. Then R is a Macaulay local ring of dimension zero, and has embedding dimension 2 and type t. Hence, for $t \ge 3$ the inequality does not hold.

References

 S. S. Abhyankar: Local rings of high embedding dimension. Amer. J. Math., 89, 1073-1077 (1967). No. 4]

291

- [2] W. Gröbner: Über Veronesesche Varietäten und deren Projektion. Arch. Math., 14, 257-264 (1965).
- [3] J. Herzog und E. Kunz: Der kanonische Modul eines Cohen-Macaulay-Rings. Lecture Notes in Math., 238, Springer-Verlag (1971).
- [4] T. Matsuoka: Some remarks on a certain transformation of Macaulay rings. J. Math. Kyoto Univ., 11, 301-309 (1971).
- [5] K. Watanabe: A condition for invariant subrings of finite groups to be Gorenstein. Reports of the 7th Symposium on Homological Algebra held at Nagoya Univ., Nov. 9-11, 1972 (1973) (in Japanese).
- [6] ——: Certain invariant subrings are Gorenstein. I (to appear in Osaka J. Math. (submitted in April 1973)).