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1. Main result. Let K be a field and t, ..., t indeterminates.
Let m be a positive integer. In this paper we consider the ring R,
generated, over K, by all the monomials t’.., t such that , p,=m.

Let S, be the localization of R, at the maximal ideal generated by
all t’.., t in R,. In [2] GrSbner showed that the local ring S, is
a Macaulay ring of dimension n. In this paper this ring is called a
Veronesean local ring.

In general, it is well known that in a Macaulay local ring the
number of the irreducible components of an ideal generated by a system
of parameters is an invariant of the ring. This invariant is called the
type of the ring (cf. [4]). A Macaulay local ring is a Gorenstein ring
if and only if the ring has type one.

The aim of this paper is to prove the following theorem.
Theorem. Let S, be a Veronesean local ring. Then

type S, 1 if n-- 0 (mod. m)
and

S,__n+m-r-/1|\ if n=_r (mod. m) 0<r<m.type
\ n--1 /

As a direct consequence of the theorem, we have the following
Corollary. A Veronesean local ring S, is a Gorenstein ring if

and only if n= 1 or n--O (rood. m).
2. Proof of theorem. For a non-negative integer s, we denote

by P(s) the set of ordered n-tuples (p)=(p, ...,p) of non-negative

integers p, such that p,=sm. We also denote by t() the mollomial

t’.., t-. With the same notation as in 1, the ring R,=K[t() J(p)
e P(1)]. Let m be the maximal ideal generated by all t(), (p)e P(1),
and q the ideal generated by t?,..., t. Then_ q is an m-primary ideal.
Since the localization S, of R, at m is a Macaulay local ring of
dimension n and since {t?, ..., ty} is a maximal regular sequence of
S, (cf. [2]), the type of S, is given by the dimension of the K-vector
space (q m)/q (cf. [4]).

Before proving some lemmas we give preliminary remarks" A
monomial t() is in Rn, if and only if (p) is in P(s) for some s. If (p)
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is in P(s), then t() is in m. The ideal m is generated by all t(, (p)
e P(s). Let Q(s) be the set consisting of all (p) in P(s) such that p m
or l<i<n. Let (p) be in P(s). Then t() is in q if and only i (p) is
not in Q(s). Hence mq i and only i Q(s) is the empty set.

Lemma 1. Assume that n>_2 and m>_2. Let k be the integer
such that n-n/mk<_n-n/m+l. Then nq and m-q.

Proof. Let (p) be in P(k). Then p=km(m-- 1)n. Hence
i=l

p>_m 2or some ]. This shows that mq. Next we showthat m-: q.
In order to prove this it is enough to show that Q(k-1) is not the
empty set. First we consider the case whea n>_m. Let d=(m--1)n
--(k--1)m. Then d is non-negative integer. Since n>_m and km
-(m-1)n0, we have n-d-n-m+km-(m-1)nO. If d=0, we
set p=m--1 for l<i<n. If d0, we set p=m--2 for l<_i_d and
p=m-- 1 or d+ 1<_i<_ n. Then (p) is in Q(k- 1). Next we consider
the case when mn. In this case we have k=n. Let m=qn+w,
O<_wn. Set p-(n--1)q and p=(n-1)q+w for 2.<i<n. Then (p)
is in Q(k-1). Hence in any case Q(k-1) is not the empty set. q.e.d.

We remark that if n___ 2 and m_>2, then the integer k in Lemma 1
is not less than 2.

Lemma 2. Assume that n>_2 and m>_2. Let k be the same
integer as in Lemma 1. If s<_k--2, then for each (p) in Q(s) there
exists (u) in P(1) such that p +u m for 1< i n.

Proof. Set q=m-p. Then Oq<_m and (q-l)=(n-s)m
i=l

--n_> (n-- k+ 2)m--n_>m. Hence we can choose integers u so that

q 1 _>u >_ 0 and , u-m. Then p+u m. q.e.d.
i=l

Lemma :. Assume that n>_2 and m>_2. Let k be the same
integer as in Lemma 1. Then q" r--q/ra-.

Proof. Since mq by Lemma 1, we have q+m-q m. We
show the opposite inclusion. Let x be an element in q’m. We can
write x a()t() + y, where y is an element in q + m-, a() are elements

in K and the sum is taken or all (p) in Q-L) Q(]). We show that
j=O

a()--0 or all (p) in Q. Let (q) be in Q. Then by Lemma 2 there
exists (v) in P(1) such that q +v m or 1<i< n. Let Q’ be the set
consisting of all (p) in Q such that p+v<m or 1<i<n. Since xm

t(/) is in q, where the sumq and ymq by Lemma 1, ’is taken or all (p) in Q’. Therefore we have a()=0 for all (p) in Q’,
arid hence a(q)=.0. This shows that x is in q + m-. q.e.d.

Before proving the theorem, we remark that i ma+q, then the
dimension of the K-vector space (q+m)/q is equal to the number o
elements o Q(h).
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Proof of theorem. For n-- 1 or m-- 1, S, is a regular local ring,
hence it is a Gorenstein ring, that is, typeSn,=l. Therefore it is
enough to prove the theorem for n>_ 2 and m>_ 2. In case when n- 0
(mod. m)" Let n--mq. Then the integer k in Lemma 1 is equal to

(m--1)q+l. Since , p-(m-1)qm-(m-1)n for (p) in P(k-1), Q(k
i=l

--1) consists of only one tuple (m--1, ..., m--l). Hence by Lemma 3
we have type Sn,= 1. In case when n-r (mod. m) 0rm" Let n
--mq+r. Then k--(m--1)q+r. Let QI be the set of n-tuples (q)

=(ql, "’’,qn) such that q>_0 or l<i<n and q-m-r. Since
i=l

5, (m--l--p)=m--r for every (p) in Q(k-1), the map Q(k-1)-Q’

defined by (p)(q), q=m--l-p, is a bijection. Hence type S, is
equal to the number o elements of Q’. Obviously it is equal to

(n+m--r--1)n--1 q.e.d.

Remark. If the ground field K has characteristic zero, R, is the
ring of invariants of a cyclic group of order m acting on K[t, ..., tn].
In this case, our results are closely related to K. Watanabe [5] and
[6]. *

:. Supplementary results. In this section we give some results
on the connection between the type, the embedding dimension and the
dimension o a Veronesean local ring. Let T be the polynomial ring

K, in (n +n--lm-- 1) indeterminates X(, (p) e P(1). Letover . T-R,
be the ring homomorphism defined by (X())- t(). Let S be the local-
ization of T at the maximal ideal of T generated by all X(), (p) e P(1).
Since the kernel of is generated by all X()X(--X(X(), p+q--u
+v for l<i<n (cf. [2]), the local homomorphism ," SS,, induced
by is a minimal embedding of Sn,, that is, the kernel of , is con-
rained in the square of the maximal ideal of S. Hence the embedding

dimension of S, is equal to (n+n_lm-1). We first note that S, is

a regular local ring if and only if n-1 or m-1. This follows from

the fact that S, is regular if and only if (n+m-1)n_l -n. In [2]

GrSbner showed that the kernel o , and hence the kernel o , are

minimally generated by c-(e 1)-(2m:_nl-1) elements, where e is

the embedding dimension o:f Sn that is, e--(n+m-l- Hence Sn’’ \/t-1
*> Especially, in the characteristic zero case, the theorem in 1 is an easy

consequence of Lemma 6 in [5] or of Lemma 7 in [6]. In the positive characteristic
case, however, the theorem is not contained in [5] and [6].
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is a complete intersection if and only if c--e-n. We now show the
following

Proposition 1. A Veronesean local ring Sn, which is not a regu-
lar local ring is a complete intersection if and only if n-m-2.

Proof. If n---m---2, then c--e--n-1. Hence S, is a complete
intersection. Conversely assume that (n, m):/= (2, 2). By the corollary
in 1 we may, furthermore, assume that n--mq for some positive

integer q. Write 2 1 de, where d-- l-[ (2m/n- i) / (2m+ 1-- i).
i=1

Since (n+m-i)/(m+l-i)>(2m+n-i)/(2m/l-i) for
and since n-2(n+m)/(m+l)-m(q(m-1)-2}/(m+l)>_O, we have
e--2d>O. Therefore we have c--e+n-(e/2)(e--2d--1)+n>O. This
shows that S, is not a complete intersection, q.e.d.

If n_>3 and m_>2 and if n--0 (mod. m), then S, is an example
of an n-dimensional normal Gorenstein local domain which is not a
complete intersection.

Proposition 2. If a Veronesean local ring Sn, is not a regular
local ring, then the following inequality holds;

emdim S,-dim S,_>type S,.
Proof. Since emdim S,-dim S,O, the inequality obviously

holds when n--0 (mod. m). Consider the case when n=_r (mod. m)

0<r< Since, in general, (I) i>,( we have (n+m-1)m. =\t/’ n-1

n--1 +h, where h== n-2 If n=2, then r=2

and m2. Hence h--n--2. If n2’thenh>(n+m-r-1
+l--n. Therefore we have (+m--1)n--1 --n>_ n--1 for n>_2

and m>_2, and this is the required inequality, q.e.d.

Remark. In general, for a Macaulay local ring R, the following
inequalities hold" (1) multiplicity R>_emdim R-dim R+ 1 (Abhyankar
1]);(2) multiplicity R_>type R+ 1 if R is not regular (Engelken, cf.
[3]). For a Macaulay local ring R which is not regular, the inequality
emdim R--dim R>_type R does not hold in general. In fact, consider
the ring R K[X, Y]/(X, Y)t, t_> 2. Then R is a Macaulay local ring
of dimension zero, and has embedding dimension 2 and type t. Hence,
for t_> 3 the inequality does not hold.

[11
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