65. On an Invariant of Veronesean Rings

By Tadayuki Matsuoka
Department of Mathematics, Ehime University

(Comm. by Kunihiko Kodaira, m. J. A., April 18, 1974)
§ 1. Main result. Let K be a field and t_{1}, \cdots, t_{n} indeterminates. Let m be a positive integer. In this paper we consider the ring $R_{n, m}$ generated, over K, by all the monomials $t_{1}^{p_{1}} \cdots t_{n}^{p_{n}}$ such that $\sum_{i=1}^{n} p_{i}=m$. Let $S_{n, m}$ be the localization of $R_{n, m}$ at the maximal ideal generated by all $t_{1}^{p_{1}} \cdots t_{n}^{p_{n}}$ in $R_{n, m}$. In [2] Gröbner showed that the local ring $S_{n, m}$ is a Macaulay ring of dimension n. In this paper this ring is called a Veronesean local ring.

In general, it is well known that in a Macaulay local ring the number of the irreducible components of an ideal generated by a system of parameters is an invariant of the ring. This invariant is called the type of the ring (cf. [4]). A Macaulay local ring is a Gorenstein ring if and only if the ring has type one.

The aim of this paper is to prove the following theorem.
Theorem. Let $S_{n, m}$ be a Veronesean local ring. Then

$$
\text { type } S_{n, m}=1 \quad \text { if } n \equiv 0(\bmod . m)
$$

and

$$
\text { type } S_{n, m}=\binom{n+m-r-1}{n-1} \quad \text { if } n \equiv r(\bmod . m) \quad 0<r<m .
$$

As a direct consequence of the theorem, we have the following
Corollary. A Veronesean local ring $S_{n, m}$ is a Gorenstein ring if and only if $n=1$ or $n \equiv 0(\bmod . m)$.
§ 2. Proof of theorem. For a non-negative integer s, we denote by $\mathrm{P}(s)$ the set of ordered n-tuples $(p)=\left(p_{1}, \cdots, p_{n}\right)$ of non-negative integers p_{i} such that $\sum_{i=1}^{n} p_{i}=s m$. We also denote by $t^{(p)}$ the monomial $t_{1}^{p_{1}} \ldots t_{n}^{p_{n}}$. With the same notation as in §1, the ring $R_{n, m}=K\left[t^{(p)} \mid(p)\right.$ $\in P(1)]$. Let \mathfrak{m} be the maximal ideal generated by all $t^{(p)},(p) \in \mathrm{P}(1)$, and \mathfrak{q} the ideal generated by $t_{1}^{m}, \cdots, t_{n}^{m}$. Then \mathfrak{q} is an \mathfrak{m}-primary ideal. Since the localization $S_{n, m}$ of $R_{n, m}$ at \mathfrak{m} is a Macaulay local ring of dimension n and since $\left\{t_{1}^{m}, \cdots, t_{n}^{m}\right\}$ is a maximal regular sequence of $S_{n, m}$ (cf. [2]), the type of $S_{n, m}$ is given by the dimension of the K-vector space ($\mathfrak{q}: \mathfrak{m}$)/q (cf. [4]).

Before proving some lemmas we give preliminary remarks: A monomial $t^{(p)}$ is in $R_{n, m}$ if and only if (p) is in $\mathrm{P}(s)$ for some s. If (p)
is in $\mathrm{P}(s)$, then $t^{(p)}$ is in \mathfrak{m}^{s}. The ideal \mathfrak{m}^{s} is generated by all $t^{(p)},(p)$ $\in \mathrm{P}(s)$. Let $\mathrm{Q}(s)$ be the set consisting of all (p) in $\mathrm{P}(s)$ such that $p_{i}<m$ for $1 \leq i \leq n$. Let (p) be in $\mathrm{P}(s)$. Then $t^{(p)}$ is in \mathfrak{q} if and only if (p) is not in $\mathrm{Q}(s)$. Hence $\mathfrak{m}^{s} \subseteq \mathfrak{q}$ if and only if $\mathrm{Q}(s)$ is the empty set.

Lemma 1. Assume that $n \geq 2$ and $m \geq 2$. Let k be the integer such that $n-n / m<k \leq n-n / m+1$. Then $\mathfrak{m}^{k} \subseteq \mathfrak{q}$ and $\mathfrak{m}^{k-1} \nsubseteq \mathfrak{q}$.

Proof. Let (p) be in $\mathrm{P}(k)$. Then $\sum_{i=1}^{n} p_{i}=k m>(m-1) n$. Hence $p_{j} \geq m$ for some j. This shows that $\mathfrak{m}^{k} \subseteq \mathfrak{q}$. Next we show that $\mathfrak{m}^{k-1} \nsubseteq \mathfrak{q}$. In order to prove this it is enough to show that $\mathrm{Q}(k-1)$ is not the empty set. First we consider the case when $n \geq m$. Let $d=(m-1) n$ $-(k-1) m$. Then d is a non-negative integer. Since $n \geq m$ and $k m$ $-(m-1) n>0$, we have $n-d=n-m+k m-(m-1) n>0$. If $d=0$, we set $p_{i}=m-1$ for $1 \leq i \leq n$. If $d>0$, we set $p_{i}=m-2$ for $1 \leq i \leq d$ and $p_{i}=m-1$ for $d+1 \leq i \leq n$. Then (p) is in $\mathrm{Q}(k-1)$. Next we consider the case when $m>n$. In this case we have $k=n$. Let $m=q n+w$, $0 \leq w<n$. Set $p_{1}=(n-1) q$ and $p_{i}=(n-1) q+w$ for $2 \leq i \leq n$. Then (p) is in $\mathrm{Q}(k-1)$. Hence in any case $\mathrm{Q}(k-1)$ is not the empty set. q.e.d.

We remark that if $n \geq 2$ and $m \geq 2$, then the integer k in Lemma 1 is not less than 2.

Lemma 2. Assume that $n \geq 2$ and $m \geq 2$. Let k be the same integer as in Lemma 1. If $s \leq k-2$, then for each (p) in $\mathrm{Q}(s)$ there exists (u) in $\mathrm{P}(1)$ such that $p_{i}+u_{i}<m$ for $1 \leq i \leq n$.

Proof. Set $q_{i}=m-p_{i}$. Then $0<q_{i} \leq m$ and $\sum_{i=1}^{n}\left(q_{i}-1\right)=(n-s) m$ $-n \geq(n-k+2) m-n \geq m$. Hence we can choose integers u_{i} so that $q_{i}-1 \geq u_{i} \geq 0$ and $\sum_{i=1}^{n} u_{i}=m$. Then $p_{i}+u_{i}<m$. q.e.d.

Lemma 3. Assume that $n \geq 2$ and $m \geq 2$. Let k be the same integer as in Lemma 1. Then $\mathfrak{q}: \mathfrak{n}=\mathfrak{q}+\mathfrak{m}^{k-1}$.

Proof. Since $\mathfrak{m}^{k} \subseteq \mathfrak{q}$ by Lemma 1, we have $\mathfrak{q}+\mathfrak{m}^{k-1} \subseteq \mathfrak{q}: \mathfrak{m}$. We show the opposite inclusion. Let x be an element in $\mathfrak{q}: \mathfrak{m}$. We can write $x=\sum a_{(p)} t^{(p)}+y$, where y is an element in $\mathfrak{q}+\mathfrak{m}^{k-1}, a_{(p)}$ are elements in K and the sum \sum is taken for all (p) in $\mathrm{Q}=\bigcup_{j=0}^{k-2} \mathrm{Q}(j)$. We show that $a_{(p)}=0$ for all (p) in Q. Let (q) be in Q. Then by Lemma 2 there exists (v) in $\mathrm{P}(1)$ such that $q_{i}+v_{i}<m$ for $1 \leq i \leq n$. Let Q^{\prime} be the set consisting of all (p) in Q such that $p_{i}+v_{i}<m$ for $1 \leq i \leq n$. Since $x \mathfrak{m}$ $\subseteq \mathfrak{q}$ and $y \mathfrak{m} \subseteq \mathfrak{q}$ by Lemma $1, \Sigma^{\prime} a_{(p)} t^{(p+v)}$ is in \mathfrak{q}, where the sum Σ^{\prime} is taken for all (p) in Q^{\prime}. Therefore we have $a_{(p)}=0$ for all (p) in Q^{\prime}, and hence $a_{(q)}=0$. This shows that x is in $\mathfrak{q}+\mathfrak{m}^{k-1}$. q.e.d.

Before proving the theorem, we remark that if $\mathfrak{m}^{h+1} \subseteq \mathfrak{q}$, then the dimension of the K-vector space $\left(\mathfrak{q}+\mathfrak{m}^{h}\right) / \mathfrak{q}$ is equal to the number of elements of $\mathbf{Q}(h)$.

Proof of theorem. For $n=1$ or $m=1, S_{n, m}$ is a regular local ring, hence it is a Gorenstein ring, that is, type $S_{n, m}=1$. Therefore it is enough to prove the theorem for $n \geq 2$ and $m \geq 2$. In case when $n \equiv 0$ (mod. m): Let $n=m q$. Then the integer k in Lemma 1 is equal to $(m-1) q+1$. Since $\sum_{i=1}^{n} p_{i}=(m-1) q m=(m-1) n$ for (p) in $\mathrm{P}(k-1), \mathrm{Q}(k$ -1) consists of only one tuple ($m-1, \cdots, m-1$). Hence by Lemma 3 we have type $S_{n, m}=1$. In case when $n \equiv r(\bmod m) 0<r<m$: Let n $=m q+r$. Then $k=(m-1) q+r$. Let Q^{\prime} be the set of n-tuples (q) $=\left(q_{1}, \cdots, q_{n}\right)$ such that $q_{i} \geq 0$ for $1 \leq i \leq n$ and $\sum_{i=1}^{n} q_{i}=m-r$. Since $\sum_{i=1}^{n}\left(m-1-p_{i}\right)=m-r$ for every (p) in $\mathrm{Q}(k-1)$, the map $\mathrm{Q}(k-1) \rightarrow \mathrm{Q}^{\prime}$ defined by $(p) \mapsto(q), q_{i}=m-1-p_{i}$, is a bijection. Hence type $S_{n, m}$ is equal to the number of elements of Q^{\prime}. Obviously it is equal to $\binom{n+m-r-1}{n-1}$.

Remark. If the ground field K has characteristic zero, $R_{n, m}$ is the ring of invariants of a cyclic group of order m acting on $K\left[t_{1}, \cdots, t_{n}\right]$. In this case, our results are closely related to K. Watanabe [5] and [6].*)
§ 3. Supplementary results. In this section we give some results on the connection between the type, the embedding dimension and the dimension of a Veronesean local ring. Let T be the polynomial ring over K, in $\binom{n+m-1}{n-1}$ indeterminates $X_{(p)},(p) \in \mathrm{P}(1)$. Let $\phi: T \rightarrow R_{n, m}$ be the ring homomorphism defined by $\phi\left(X_{(p)}\right)=t^{(p)}$. Let S be the localization of T at the maximal ideal of T generated by all $X_{(p)},(p) \in \mathrm{P}(1)$. Since the kernel of ϕ is generated by all $X_{(p)} X_{(q)}-X_{(u)} X_{(v)}, p_{i}+q_{i}=u_{i}$ $+v_{i}$ for $1 \leq i \leq n$ (cf. [2]), the local homomorphism $\psi: S \rightarrow S_{n, m}$ induced by ϕ is a minimal embedding of $S_{n, m}$, that is, the kernel of ψ is contained in the square of the maximal ideal of S. Hence the embedding dimension of $S_{n, m}$ is equal to $\binom{n+m-1}{n-1}$. We first note that $S_{n, m}$ is a regular local ring if and only if $n=1$ or $m=1$. This follows from the fact that $S_{n, m}$ is regular if and only if $\binom{n+m-1}{n-1}=n$. In [2] Gröbner showed that the kernel of ϕ, and hence the kernel of ψ, are minimally generated by $c=\binom{e+1}{2}-\binom{2 m+n-1}{n-1}$ elements, where e is the embedding dimension of $S_{n, m}$, that is, $e=\binom{n+m-1}{n-1}$. Hence $S_{n, m}$

[^0]is a complete intersection if and only if $c=e-n$. We now show the following

Proposition 1. A Veronesean local ring $S_{n, m}$ which is not a regular local ring is a complete intersection if and only if $n=m=2$.

Proof. If $n=m=2$, then $c=e-n=1$. Hence $S_{2,2}$ is a complete intersection. Conversely assume that $(n, m) \neq(2,2)$. By the corollary in $\S 1$ we may, furthermore, assume that $n=m q$ for some positive integer q. Write $\binom{2 m+n-1}{n-1}=d e$, where $d=\prod_{i=1}^{m}(2 m+n-i) /(2 m+1-i)$. Since $(n+m-i) /(m+1-i)>(2 m+n-i) /(2 m+1-i)$ for $1 \leq i \leq m-1$ and since $n-2(n+m) /(m+1)=m\{q(m-1)-2\} /(m+1) \geq 0$, we have $e-2 d>0$. Therefore we have $c-e+n=(e / 2)(e-2 d-1)+n>0$. This shows that $S_{n, m}$ is not a complete intersection. q.e.d.

If $n \geq 3$ and $m \geq 2$ and if $n \equiv 0(\bmod . m)$, then $S_{n, m}$ is an example of an n-dimensional normal Gorenstein local domain which is not a complete intersection.

Proposition 2. If a Veronesean local ring $S_{n, m}$ is not a regular local ring, then the following inequality holds;

$$
\text { emdim } S_{n, m}-\operatorname{dim} S_{n, m} \geq \text { type } S_{n, m} .
$$

Proof. Since emdim $S_{n, m}-\operatorname{dim} S_{n, m}>0$, the inequality obviously holds when $n \equiv 0$ (mod. m). Consider the case when $n \equiv r$ (mod. m) $0<r<m$. Since, in general, $\binom{s+1}{t+1}=\sum_{i=t}^{s}\binom{i}{t}$, we have $\binom{n+m-1}{n-1}$ $=\binom{n+m-r-1}{n-1}+h$, where $h=\sum_{i=1}^{r}\binom{n+m-i-1}{n-2}$. If $n=2$, then $r=2$ and $m>2$. Hence $h=n=2$. If $n>2$, then $h \geq\binom{ n+m-r-1}{n-2} \geq\binom{ n-1}{n-2}$ $+1=n$. Therefore we have $\binom{n+m-1}{n-1}-n \geq\binom{ n+m-r-1}{n-1}$ for $n \geq 2$ and $m \geq 2$, and this is the required inequality. q.e.d.

Remark. In general, for a Macaulay local ring R, the following inequalities hold: (1) multiplicity $R \geq \operatorname{emdim} R-\operatorname{dim} R+1$ (Abhyankar 1]) ; (2) multiplicity $R \geq$ type $R+1$ if R is not regular (Engelken, cf. [3]). For a Macaulay local ring R which is not regular, the inequality emdim $R-\operatorname{dim} R \geq$ type R does not hold in general. In fact, consider the ring $R=K[X, Y] /(X, Y)^{t}, t \geq 2$. Then R is a Macaulay local ring of dimension zero, and has embedding dimension 2 and type t. Hence, for $t \geq 3$ the inequality does not hold.

References

[1] S. S. Abhyankar: Local rings of high embedding dimension. Amer. J. Math., 89, 1073-1077 (1967).
[2] W. Gröbner: Über Veronesesche Varietäten und deren Projektion. Arch. Math., 14, 257-264 (1965).
[3] J. Herzog und E. Kunz: Der kanonische Modul eines Cohen-MacaulayRings. Lecture Notes in Math., 238, Springer-Verlag (1971).
[4] T. Matsuoka: Some remarks on a certain transformation of Macaulay rings. J. Math. Kyoto Univ., 11, 301-309 (1971).
[5] K. Watanabe: A condition for invariant subrings of finite groups to be Gorenstein. Reports of the 7th Symposium on Homological Algebra held at Nagoya Univ., Nov. 9-11, 1972 (1973) (in Japanese).
[6] -: Certain invariant subrings are Gorenstein. I (to appear in Osaka J. Math. (submitted in April 1973)) .

[^0]: *) Especially, in the characteristic zero case, the theorem in $\S 1$ is an easy consequence of Lemma 6 in [5] or of Lemma 7 in [6]. In the positive characteristic case, however, the theorem is not contained in [5] and [6].

