59. On a Problem of Fossum

By Tetsushi Ogoma
Department of Mathematics Kyoto University

(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

Robert M. Fossum proposes the following problem in his book "The divisor class group of a Krull domain":*)

Problem. Let k be a field of characteristic not equal to 2 , and $F\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ a non-degenerate quadratic form over k. Find a necessary and sufficient condition in order that $A_{F}=K\left[X_{1}, X_{2}, X_{3}, X_{4}\right] /(F)$ may be a factorial ring.

The purpose of the present note is to give the answer of the problem. In this note, we employ the same terminology and notation as of $[F]$.

Lemma 1. Let $F=X_{1}^{2}+a X_{2}^{2}+b X_{3}^{2}+c X_{4}^{2}(a b c \neq 0, a, b, c \in k)$. If c $=a b$ then $\mathrm{Cl}\left(A_{F}\right) \simeq \boldsymbol{Z}$

Proof. If $t=\sqrt{-a}$ is in k, then $F=U V+Y Z$ with $U=X_{1}+t X_{2}, V$ $=X_{1}-t X_{2}, Y=b\left(X_{3}+t X_{4}\right), Z=X_{3}-t X_{4}$ and therefore the assertion in this case is obvious by [F], § 14.

If t is not in k, then we can show that class \mathfrak{p}, where $\mathfrak{p}=\left(x_{1}^{2}+a x_{2}^{2}\right.$, $x_{3}^{2}+a x_{4}^{2}, x_{1} x_{3}+a x_{2} x_{4}, x_{1} x_{4}-x_{2} x_{3}$) and x_{i} is the image of X_{i} in A_{F} ($i=1,2,3,4$), generates infinite cyclic group. Since we know that $\mathrm{Cl}\left(A_{F}\right)$ is a subgroup of an infinite cyclic group by the proof of KleinNagata theorem, we deduce that $\mathrm{Cl}\left(A_{F}\right) \simeq Z$. (Cf. the proof of L. Roberts quoted in $[F], \S 11$ p. 52.)

Lemma 2. Let $F=X_{1}^{2}+a X_{2}^{2}+b X_{3}^{2}+c X_{4}^{2}(a, b, c \in k, a b c \neq 0)$. If none of $-a,-b c, a b c$ is the square of any element of k, then A_{F} is factorial.

Proof. In view of the proof of Klein-Nagata theorem, it is sufficient to show that $G=b X_{3}^{2}+c X_{4}^{2}$ is irreducible in $k(t)\left[X_{3}, X_{4}\right]$, where $t=\sqrt{-a}$. To do this it is sufficient to prove that $-c / b$ cannot be written as the square of any element of $k(t)$. Assume the contrary, i.e., that it holds that

$$
-c / b=(\alpha+\beta t)^{2}=\alpha^{2}-\beta^{2} \alpha+2 \alpha \beta t \quad(\alpha, \beta \in k)
$$

Since 1 and t are linearly independent over k we must have $2 \alpha \beta=0$. Since we assumed that ch $k \neq 2$ and since $-c / b$ is not the square of any element of k, we have $\beta \neq 0$ and therefore $\alpha=0$. But then

$$
-c / b=-a \beta^{2} \quad \text { and } \quad a b c=\beta^{2} a^{2} b^{2}
$$

[^0]a contradiction. This completes the proof of Lemma 2.
It is well known that a non-degenerate quadratic form F in $k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ can be written as
$$
F\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{1}^{2}+a X_{2}^{2}+b X_{3}^{2}+c X_{4}^{2} \quad(a, b, c \in k a b c \neq 0)
$$
by an adequate linear transformation. In this case, if $-b$ or $-c$ is the square of an element of k, then by changing indices of X we may assume that $-a$ is the square of the element of k; we may do the same even if some one of $-a b,-b c,-c a$ is the square of an element of k by multiplying an element of k and by changing indices of X. (For example, if $-a b=\beta^{2}, \beta \in k$ then $\frac{1}{a} F=\frac{1}{a} X_{1}^{2}+X_{2}^{2}-\frac{\beta^{2}}{a^{2}} X_{3}^{2}+\frac{c}{a} X_{4}^{2}$ and we put $X_{1}^{\prime}=X_{2}, X_{2}^{\prime}=X_{3}, X_{3}^{\prime}=X_{1}, X_{4}^{\prime}=X_{4}$). Therefore the following theorem covers all the cases.

Theorem. Let $F=X_{1}^{2}+a X_{2}^{2}+b X_{3}^{2}+c X_{4}^{2}(a b c \neq 0)$ and $A_{F}=k\left[X_{1}, X_{2}\right.$, $\left.X_{3}, X_{4}\right] /(F)$.

1) If -a is the square of an element of k, then A_{F} is factorial if and only if $-b c$ is not the square of any element of k.
2) If none of $-a,-b,-c,-a b,-b c,-c a$ is the square of any element of k, then A_{F} is factorial if and only if abc is not the square of any element of k.
3) If A_{F} is not factorial, then $\mathrm{Cl}\left(A_{F}\right) \simeq Z$.

Proof. In the case 1), $G=b X_{3}^{2}+c X_{4}^{2}$ is irreducible if and only if $-b c$ is not the square of an element of k, and we prove this case.

In the case 2), if $a b c$ is not the square of any element of k, then A_{F} is factorial by Lemma 2.

In $a b c$ is the square of an element of k, then

$$
a b c=\alpha^{2}(\alpha \in k), \quad c=\frac{\alpha^{2}}{a^{2} b^{2}} \cdot a b
$$

and by putting $X_{4}^{\prime}=\frac{\alpha}{a b} X_{4}$, it holds that

$$
F=X_{1}^{2}+a X_{2}^{2}+b X_{3}^{2}+a b X_{4}^{\prime 2}
$$

and we have $\mathrm{Cl}\left(A_{F}\right) \simeq Z$ by Lemma 1 .
The non-factorial case of 1) is also the same as the proof of Lemma 1. This completes the proof.

[^0]: *) In this note, the symbol $[F]$ will refer to this literature, Ergebn. Math. Bd. 74, Springer (1973).

