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78. On K. Yosida’s Class (A) of Meromorphic Functions

By Shinji YAMASHITA
Tokyo Metropolitan University

(Comm. by KSsaku Y0SlDA, M..r./t., June. 11, 1974)

1o Introduction. The class (A) in K. Yosida’s sense [5] consists
of all functions f meromorphic in the plane C" Iz] + c such that the
family {f.}, a e C, of functions f.(z) f(z + ), z e C, is normal in the
sense of P. Montel in C. We set k(f)=supec f*(z) for f e (A), where
f*(z)--If’(z)l/(l+ If(z)l2) we know that k(f) + c [5, Theorem 1].
Plainly, k(f)0 if and only if f is non-constant. Given a function f
meromorphic in C and a point z e C, let u(z)-u(z, f) be the supremum
of r0 such that f is univalent in the diskD(z,r)=(w e C;
if such an r does not exist, we set u(z)=u(z, f)=O. Then u(z)=0 if
and only if f*(z)-0. Except for the case that f is linear, u(z)
at each z e C. Furthermore, a non-linear f is univalent in D(z, u(z))
and the function u is continuous in C (Lemma). Here and elsewhere
a meromorphic function f is called non-linear if f is non-constant and
not linear. We begin with

Theorem 1. Given a non-linear f of class (A), we have at each
zeC,
( 1 ) f*(z) <= (32/2)k(f)2u(z, f).

Of course, the estimate (1) has the good meaning if u(z,f)
<=z/{32k(f)}. As an application of Theorem 1 we know that u(z, f)
0 implies f*(Zn)O for each sequence of points {z}C converging
to a point of C or else to the point at infinity. However, the converse
is not valid; the exponential function E(z)=e belongs to (A)with
u(z, E)-- at each z e C but E*(n)-O as n-* + c, n being positive in-
tegers.

Our next result concerns the derived function.
Theorem 2. Given a non-linear f of class (A), we have at each

zC,
( 2 ) f’*z)g2 [min {k(f) -1, u(z, f)}]-I + 1,
where f’*(z)-If"(z)l/(1 + If’(z’) 12).

The function E e (A) has the property that E’ e (A), which suggests
the following application of Theorem 2. We have f’e (A) if f e (A)
and if inf> u(z,f)>O for a certain constant R0. Indeed, f’* is
bounded in Izl>R by (2), while f’* is bounded in Izl<=2R because f’* is
continuous in C, whence f’* is bounded in C. Therefore f’e (A) by
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[5, Theorem 1]. We remark that all rational functions (and their de-
rivatives) belong to (A).

We next consider the holomorphic case.

Theorem 3. Given a non-linear entire function f, we have at
each z e C,
( 3 if* (z) <= 2u(z, f)-’.

We do not assume f e (A)in this case. Thus, if f is non-linear
and entire, and urther inf>. u(z, f)O for some constant R0, we
have f’ e (A).

2. Proofs. First o all we need
Lemma. For a non-linear meromorphic f in C we have for each

pair z, w e C,
( 4 ) lu(z, f)-u(w,

Proof. By the symmetry of z and w in (4) we have only to con-
sider the case u(z)u(w). If z e D(w, u(w)), then u(w)_<lz--w I, whence
ollows (4). I z e D(w, u(w)), then f is univalent in D(z, u(w)--lz--wl),
rom which ollows u(w)--]z--wl<=u(z), or u(w)-u(z)<=lz-wl, again
(4).

Proof of Theorem 1. Since u is continuous in C by (4) and since

f* is continuous in C, we have only to prove (1) for z with u(z)0 and
f(z) =/= c. Actually, the set of points z C where u(z)=O or f(z)-c
is isolated. Set b=/{4k(f)} and consider the function of w"

(5) g(w)-- f(w + z)-f(z)
1 + f(z)f(w + z)

in D(0, b). Then g(O)=O, Ig’(O)l--f*(z) and ]gll in D(0, b). In effect,
g*(5)-- f*(+ z) <= k(f), e D(O, b), and

Arctan g(w) ]=
1 + t

-<
(,) l+lw= g*(5) ldSl<=k(f) lwl/4,

J

where g(S)denotes the Riemannian image by g of the line segment

S connecting 0 and w e D(0, b). Consider h() g(b) / {bg’(0)} in I1 1.
Then Ih(5)l<(b Ig’(O)l)-’--(bf*(z))-=M in 15[<1 and h(0)=0, h’(0)-l.
We may apply the result of J. Dieudonn6 (cf. [3, p. 259]) to h. Then
h is univalent in ISIc=I/(2M){M+(M--I)/}-, whence g is univa-
lent in Iwlbc, which implies bc<=u(z). With a slight calculation we
obtain (1).

Proof of Theorem 2. Since (2) is trivial if u(z)=0 we may assume
u(z) 0. Moreover, by the continuity of f’* and u we may again as-
sume f(z). Set d=min {k(f)-, u(z)}. Then the function g of (5)
is univalent and holomorphic in D(0, d). Actually, g*()__< k(f) for each
e D--D(O, k(f)-9, whence
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dis (g(w), 0)<=[ g*(5) IdSl<=k(f)
J

or each w e D, dis (., .) being the chordal distance. Therefore g has
no pole in D1. Consider H() g(d)/(dg’(O)} in [[ 1. Then H(0) 0,
H’(0)--I and H is univalent in I11. Consequently, by the celebrated
L. Bieberbach inequality la21=<2 for H()--/ a22+ we have
__<4 or Ig"(O)/g’(O)]g4/d. After a short computation we obtain

f"(z) 2f(z)f’(z) < 4
f’(z) l + f(z) -’

from which follows

f’*(z)-- f"(z) f’(z) <_ 4__
If’(z) l+lf’(z) d l+lf’(z)

_--<+1,

2 If(z) f’(z) 12+ l+lf(z)l l+lf’(z)l

because t/(l+t)<=l/2 and t/(l+t)l for t>=0. This completes the
proof.

Proof of Theorem 3. We consider the unction G(w)=f(w+z)
-f(z), w D(O, u(z)), or a fixed z with u(z)0. Then the unction
F()--G(u(z))/{u(z)f’(z)}=5+b+ is univalent and holomorphic
in Ill. Hence, again,

lu(z)f"(z)/f’(z)l--IF"(O)l--2 Ib.l<=4,
whence f’*(z) <= 2u(z)-.

Remark. K. Noshiro [1] obtained the notion of class (A) in the
disk D--D(0,1) ollowing the cited paper of Yosida; about twenty
years after [1] O. Lehto and K. I. Virtanen discovered again the class
(A) in D and called the members of (A) normal meromorphic functions
in D (cf. [2, p. 86 ft.]). The results analogous to Theorems I and 2 for
normal meromorphic unctions in D may easily be obtained and will
be enunciated for the details elsewhere; the result analogous to (3) of
Theorem 3 is seen in [4, (2)].
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