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78. On K. Yosida’s Class (A) of Meromorphic Functions

By Shinji YAMASHITA
Tokyo Metropolitan University

(Comm. by Kdsaku YOSIDA, M. J. A., June 11, 1974)

1. Introduction. The class (4) in K. Yosida’s sense [5] consists
of all functions f meromorphic in the plane C: |2|< + co such that the
family {f.},ae C, of functions f,(?)=f(z+a),z€C, is normal in the
sense of P. Montel in C. We set k(f)=sup,cc f*(2) for f € (A), where
f*@R=|f'®]/A+|f(@P; we know that k(f)<+ oo [5, Theorem 1].
Plainly, k(f)>0 if and only if f is non-constant. Given a function f
meromorphic in C and a point z € C, let u(z)=u(z, f) be the supremum
of »>0 such that f is univalent in the disk D(z, 7)={w e C; |lw—2z|<7};
if such an r does not exist, we set u(2)=u(z, f)=0. Then u(z)=0 if
and only if f*(2)=0. Except for the case that f is linear, u(z)<+ oo
at each ze C. Furthermore, a non-linear f is univalent in D(z, u(z))
and the function u is continuous in C (Lemma). Here and elsewhere
a meromorphic function f is called non-linear if f is non-constant and
not linear. We begin with

Theorem 1. Given a non-linear f of class (4), we have at each
zeC,

(1) J*(@) =32/ k(fYu(z, f).

Of course, the estimate (1) has the good meaning if u(z,f)
<az*/{32Kk(f)}. As an application of Theorem 1 we know that u(z,, f)
—0 implies f*(z,)—0 for each sequence of points {#z,}CC converging
to a point of C or else to the point at infinity. However, the converse
is not valid; the exponential function E(z)=e* belongs to (4) with
u(z, E)=n at each z ¢ C but E*(n)—0 as n— + oo, n being positive in-
tegers.

Our next result concerns the derived function.

Theorem 2. Given a non-linear f of class (A), we have at each
zeC,

(2) J*@=2[min {k(), uz, NI +1,
where f™*(2)=|f"(2)|/A+|f'@P.

The function E € (4) has the property that E’ ¢ (4), which suggests
the following application of Theorem 2. We have f’ ¢ (4) if fe(4)
and if inf ., u(z, f)>0 for a certain constant R>0. Indeed, f/* is
bounded in |2|>R by (2), while f’* is bounded in |z|<2R because f'* is
continuous in C, whence f’* is bounded in C. Therefore f’ ¢ (4) by
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[5, Theorem 1]. We remark that all rational functions (and their de-
rivatives) belong to (4).

We next consider the holomorphic case.

Theorem 3. Given o non-linear entire function f, we have at
each z e C,

(3) J*@)=2ulz, )7

We do not assume f e (A) in this case. Thus, if f is non-linear
and entire, and further inf,, ., u(z, f/)>0 for some constant R>0, we
have f’ e (4).

2. Proofs. First of all we need

Lemma. For a non-linear meromorphic f in C we have for each
pair z,we C,

(4) |u(z, f)—u(w, H|=|z—w|.

Proof. By the symmetry of z and w in (4) we have only to con-
sider the case u(z) <u(w). Ifze D(w,u(w)), then u(w)<|z—w|, whence
follows (4). If z € D(w,u(w)), then f is univalent in D(z, u(w)—|z—w)),
from which follows u(w)—|z—w|=u(2), or w(w)—u(z)<|z—w|, again
4).

Proof of Theorem 1. Since u is continuous in C by (4) and since
f* is continuous in C, we have only to prove (1) for z with u(z)>0 and
f(z)#0c0. Actually, the set of points ze C where u(2)=0 or f(2)=o0
is isolated. Set b=x=/{4k(f)} and consider the function of w:

_ Jw+2)—f)
(5) 1= @t
in D(0,b). Then ¢(0)=0,]9'(0)|=,*(2) and |g|<1 in D(0, ). In effect,
g*Q=r*C+»=k(f), e D(,d), and

_le@n gt [dw)|
Arct:a,nlg(w)FI0 —ﬂ_}?‘é.[a(sw 1+{wf

=L 9* Q) A<k |w|<z/4,

where ¢(S,,) denotes the Riemannian image by g of the line segment
S, connecting 0 and w € D(0,b). Consider 2({)=g(b%)/{bg’(0)} in [{|<1.
Then | (@) |<(® |9’(0)) =0 f*() =M in |£|<1 and k(0)=0, ' (0)=1.
We may apply the result of J. Dieudonné (cf. [3, p. 259]) to h. Then
h is univalent in |{|<c=1/2M)<{M + (M*—1)"*}"!, whence g is univa-
lent in |w|<be, which implies be<u(z). With a slight calculation we
obtain (1).

Proof of Theorem 2. Since (2) is trivial if #(z)=0 we may assume
#(z)>0. Moreover, by the continuity of f’* and 4 we may again as-
sume f(2)#oco. Set d=min {k(f)~*,u(2)}. Then the function g of (5)
is univalent and holomorphic in D(0, d). Actually, g*©) < k(f) for each
L e D,=D(0, k(f)""), whence
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dis (g(w), )< j g0 |dLI< k() |w]|<1

for each w e D,, dis (., -) being the chordal distance. Therefore g has
no pole in D;. Consider H()=g(d?)/{dg’(0)} in [{|<1. Then H(0)=0,
H’(0)=1 and H is univalent in |{|<1. Consequently, by the celebrated
L. Bieberbach inequality |a,|<2 for H({)={+a,*+ - - -, we have | H”(0)|
<4or|97(0)/9'(0)|=4/d. After a short computation we obtain

S2) _ 2@ ()
(@) 1+ fF

<4,
=4

from which follows
=L@ 1@ 4 @l 217@] | S@F
@] 1+|f/@F = d 1+ ®@F 1+ fRF 1+ ()}

2
<= +1,
_d+

because t/(1+t)<1/2 and t*/(1+¢t)<1 for ¢=0. This completes the
proof.

Proof of Theorem 3. We consider the function G(w)= f(w+7)
— f(2), we D, u(z)), for a fixed z with «#(2)>0. Then the function
FQ=Gu)0)/{uR)f(@}=C+b*+ --- is univalent and holomorphic
in |¢|<1. Hence, again,

[u(@) f"(2)] f(2)|=|F"(0)|=2]b,|=4,
whence f/*(z) <2u(2)~".

Remark. K. Noshiro [1] obtained the notion of class (4) in the
disk D=D(0,1) following the cited paper of Yosida; about twenty
years after [1] O. Lehto and K. I. Virtanen discovered again the class
(A4) in D and called the members of (4) normal meromorphic functions
in D (cf. [2, p. 86 ff.]). The results analogous to Theorems 1 and 2 for
normal meromorphic functions in D may easily be obtained and will
be enunciated for the details elsewhere; the result analogous to (3) of
Theorem 3 is seen in [4, (2)].
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