76. On Symbols of Fundamental Solutions of Parabolic Systems

By Kenzo Shinkai
University of Osaka Prefecture
(Comm. by Kôsaku Yosida, m. J. A., June 11, 1974)

Introduction. The calculus of multiple symbols which has been developed in Kumano-go [1] enables us to construct the fundamental solution of parabolic equations only by symbol calculus (see C. Tsutsumi [4]). The purpose of the present paper is to show that a formal fundamental solution of a parabolic system has an asymptotic expansion in a class of pseudo-differential operators (§2) and to construct a fundamental solution with the same expansion (§3). The method of construction is the same as one used in C. Tsutsumi [4] for single equations.

1. Notations and a lemma. We shall denote by $S_{\rho, \delta}^{m}$ where $-\infty$ $<m<+\infty$ and $0 \leqq \delta<\rho \leqq 1$, the set of all $M \times M$ matrices $p(x, \xi)$ with components $p_{i j}(x, \xi) \in C^{\infty}\left(R_{x}^{n} \times R_{\xi}^{n}\right)$ which satisfy the inequality

$$
\left|p_{i j(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and $p_{i j(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} p_{i j}(x, \xi)$. We denote by $|p(x, \xi)|$ the norm of the matrix, that is,

$$
|p(x, \xi)|=\sup _{0 \neq y \in C^{n}}|p(x, \xi) y| /|y|
$$

and define semi-norms $|p|_{m, k}$ by

$$
|p|_{m, k}=\max _{|\alpha|+|\beta| \leq k} \sup _{(x, \xi)}\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right|\langle\xi\rangle^{-m+\rho|\alpha|-\delta|\beta|}
$$

Then $S_{\rho, \delta}^{m}$ is a Fréchet space with these semi-norms. By $\mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m}\right)$ we denote a set of all matrices $p(t ; x, \xi) \in S_{\rho, \delta}^{m}$ which are continuous with respect to parameter t for $0 \leqq t \leqq T$. By $w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{m}\right)$ we denote a set of all matrices $p(t, s ; x, \xi) \in S_{\rho, \delta}^{m}$ which are continuous with respect to parameter t and s for $0 \leqq s \leqq t \leqq T$ with weak topology of $S_{\rho, \delta}^{m}$ defined as follows (see H. Kumano-go and C. Tsutsumi [2]): we say $\left\{p_{j}(x, \xi)\right\}_{j=0}^{\infty}$ $\subset S_{\rho, \delta}^{m}$ converges weakly to $p(x, \xi) \in S_{\rho, \delta}^{m}$, if $\left\{p_{j}(x, \xi)\right\}_{j=0}^{\infty}$ is a bounded set of $S_{\rho, \delta}^{m}$ and $p_{j(\beta)}^{(\alpha)}(x, \xi) \rightarrow p_{(\beta)}^{(\alpha)}(x, \xi)$ as $j \rightarrow \infty$ uniformly on $R_{x}^{m} \times K$ for every α, β and compact set $K \subset R_{\xi}^{n}$.

When $p_{\nu}(x, \xi) \in S_{\rho, \delta}^{m \nu}, \nu=1,2, \cdots, j$, we denote by $p_{1}(x, \xi) \circ p_{2}(x, \xi) \circ$ $\cdots \circ p_{j}(x, \xi)$ the symbol of the product $P_{1} P_{2} \ldots P_{j}$ of pseudo-differential operators $P_{\nu}=p_{\nu}\left(x, D_{x}\right)$ which has the form (see Kumano-go [1])

$$
\begin{align*}
& p_{1}(x, \xi) \circ p_{2}(x, \xi) \circ \cdots \circ p_{j}(x, \xi) \\
& =O s-\int \cdots \int e^{-i\left(y^{1} \eta^{1}+\cdots+y^{\left.j-1 \eta^{j-1}\right)}\right.} p_{1}\left(x, \xi+\eta^{1}\right) p_{2}\left(x+y^{1}, \xi+\eta^{2}\right) \cdots \tag{1.1}\\
& \quad \cdots p_{j}\left(x+y^{1}+\cdots+y^{j-1}, \xi\right) d y^{1} \cdots d y^{j-1} d \eta^{1} \cdots d \eta^{j-1}
\end{align*}
$$

and we also use the following notation:

$$
\begin{align*}
& {\left[p_{1}(x, \xi) \circ p_{2}(x, \xi) \circ \cdots \circ p_{j}(x, \xi)\right]_{k}} \\
& \quad \sum_{\left|\alpha_{2}^{1}+\alpha_{3}^{1}+\cdots+\alpha_{j}^{j-1}\right|=k} \frac{1}{\alpha_{2}^{1}!\alpha_{3}^{1}!\cdots \alpha_{j}^{j-1}!} p_{1}^{\left(\alpha_{2}^{1+\alpha_{3}^{2}+\cdots}+\cdots \alpha_{j}^{1}\right)}(x, \xi) p_{2,\left(\alpha_{2}^{2}\right)}^{\left(\alpha_{2}^{2}+\cdots+\alpha_{j}^{2}\right)}(x, \xi) \tag{1.2}\\
& \quad \cdots p_{j-1,\left(\alpha_{j-1}^{\left(\alpha_{j}^{1}+\cdots+\alpha_{j-1}^{j}\right)}(x, \xi) p_{j,\left(\alpha_{j}^{1}+\cdots+\alpha_{j}^{j-1}\right)}^{\left(\alpha_{j}^{j}\right)}(x, \xi)\right.}
\end{align*}
$$

(cf. Nagase-Shinkai [3]). Then we have the following
Lemma. When $p_{\nu}(x, \xi) \in S_{\rho, \delta}^{m_{\nu}}, \nu=0,1,2, \cdots, j$, we have
(i) $\quad p_{1}(x, \xi) \circ p_{2}(x, \xi) \circ \cdots \circ p_{j}(x, \xi) \in S_{\rho, \delta}^{m_{1}+m_{2}+\cdots+m_{j}}$,
(ii) for every N

$$
\begin{align*}
& p_{1}(x, \xi) \circ p_{2}(x, \xi) \circ \cdots \circ p_{j}(x, \xi)-\sum_{k=0}^{N-1}\left[p_{1}(x, \xi) \circ p_{2}(x, \xi) \circ \cdots \circ p_{j}(x, \xi)\right]_{k} \tag{1.3}\\
& \in S_{\rho, \delta}^{m_{1}+m_{2}+\cdots+m_{j}-(\rho-\delta) N}
\end{align*}
$$

and
(iii) (a formula which plays a fundamental role in the proof of Theorem 1)

$$
\begin{align*}
& {\left[p_{0}(x, \xi) \circ p_{1}(x, \xi) \circ \cdots \circ p_{j}(x, \xi)\right]_{k}} \\
& \quad=\sum_{\mu=0}^{k} \sum_{|\alpha|=\mu} \frac{1}{\alpha!} p_{0}^{(\alpha)}(x, \xi)\left[p_{1}(x, \xi) \circ \cdots \circ p_{j}(x, \xi)\right]_{k-\mu,(\alpha)} . \tag{1.4}
\end{align*}
$$

For the proof of (i) and (ii), see Kumango-go [1]. The formula (1.4) is derived from (1.2).
2. Asymptotic expansion of formal fundamental solutions. We shall consider the following Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u+p\left(t ; x, D_{x}\right) u=0 \quad \text { in }(0, T) \times R_{x}^{n} \tag{2.1}\\
\left.u\right|_{t=0}=u .
\end{array}\right.
$$

under two conditions:
(i) $\quad p(t ; x, \xi) \in \mathcal{E}_{t}^{0}\left(S_{\rho, 0}^{m}\right) \quad$ for $0 \leqq t \leqq T$.
(ii) There exist a continuous function $\lambda(t ; x, \xi) \geqslant c>0$ and positive constants C and $C_{\alpha, \beta}$ which satisfy

$$
\begin{equation*}
\left|e_{0}(t, s ; x, \xi)\right| \leqq C \exp \left[-\int_{s}^{t} \lambda(\sigma ; x, \xi) d \sigma\right] \quad \text { for } 0 \leqq s \leqq t \leqq T \tag{2.2}
\end{equation*}
$$

(2.3) $\quad\left|p_{(\beta)}^{(\alpha)}(t ; x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|} \lambda(t ; x, \xi) \quad$ for $0 \leqq t \leqq T$.

Here $e_{0}(t, s ; x, \xi)$ is the resolvent matrix of (2.1), that is,

$$
\begin{align*}
& e_{0}(t, s ; x, \xi) \\
& \quad=I+\sum_{j=1}^{\infty}(-1)^{j} \int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{j-1}} p\left(s_{1} ; x, \xi\right) \cdots p\left(s_{j} ; x, \xi\right) d s_{j} . \tag{2.4}
\end{align*}
$$

The convergence of the right hand side of (2.4) and the estimate

$$
\left|e_{0}(t, s ; x, \xi)\right| \leqq C_{1} \exp \left[C_{2}(t-s)\langle\xi\rangle^{m}\right] \quad C_{1}>0, C_{2}>0
$$

are easily verified.
The symbol $w(t, 0 ; x, \xi)$ of a formal fundamental solution of (2.1) is given "formally" by

$$
\begin{align*}
& w(t, s ; x, \xi) \\
& \quad=I+\sum_{j=1}^{\infty}(-1)^{j} \int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{j-1}} p\left(s_{1} ; x, \xi\right) \circ \cdots \circ p\left(s_{j} ; x, \xi\right) d s_{j} \tag{2.5}
\end{align*}
$$

and we have the following
Theorem 1. There exists an asymptotic expansion

$$
w(t, s ; x, \xi) \sim e_{0}(t, s ; x, \xi)+e_{1}(t, s ; x, \xi)+\cdots
$$

where $e_{0}(t, s ; x, \xi)$ is given by (2.4) and for $k \geqq 1$

$$
\begin{align*}
& e_{k}(t, s ; x, \xi) \\
& \quad=\sum_{j=2}^{\infty}(-1)^{j} \int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{j-1}}\left[p\left(s_{1} ; x, \xi\right) \circ \cdots \circ p\left(s_{j} ; x, \xi\right)\right]_{k} d s_{j} . \tag{2.6}
\end{align*}
$$

For every $k \geqq 0$ and α, β we have

$$
\begin{equation*}
\left|e_{k(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta, k}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|-(\rho-\delta) k} \omega_{k, \alpha, \beta} \exp \left[-\int_{s}^{t} \lambda(\sigma ; x, \xi) d \sigma\right] . \tag{2.7}
\end{equation*}
$$

Here

$$
\begin{array}{rlr}
\omega_{k, \alpha, \beta} & =\max \left\{\omega^{2}, \omega^{2 k+|\alpha|+|\beta|}\right\} & \text { for } k \geqq 1, \\
\omega_{0,0,0} & =1, & \\
\omega_{0, \alpha, \beta} & =\max \left\{\omega, \omega^{|\alpha|+|\beta|}\right\} & \text { for }|\alpha|+|\beta| \neq 0
\end{array}
$$

and

$$
\omega=\int_{s}^{t} \lambda(\sigma ; x, \xi) d \sigma .
$$

Thus $e_{k}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{-k(\rho-\delta)}\right)$ for $k=0,1,2, \cdots$.
Proof. Since $e_{0}(t, s ; x, \xi)$ is the solution of the following ordinary differential equation

$$
\begin{equation*}
\frac{d}{d t} e_{0}(t, s ; x, \xi)+p(t ; x, \xi) e_{0}(t, s ; x, \xi)=0 \tag{2.8}
\end{equation*}
$$

with initial condition $e_{0}(s, s ; x, \xi)=I$, differentiating (2.8) with respect to x and ξ, we have (2.7) for the case $k=0$.

For the case $k \geqq 1$, by the formula (1.4) and the relation

$$
\begin{align*}
& \frac{d}{d t} \int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{j}}\left[p\left(s_{1}\right) \circ p\left(s_{2}\right) \circ \cdots \circ p\left(s_{j+1}\right)\right]_{k} d s_{j+1} \tag{2.9}\\
& \quad=\int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{j-1}}\left[p(t) \circ p\left(s_{1}\right) \circ \cdots \circ p\left(s_{j}\right)\right]_{k} d s_{j}
\end{align*}
$$

for $j=1,2, \cdots$, we see $e_{k}(t, s ; x, \xi)$ is the solution of the following ordinary differential equation

$$
\begin{align*}
& \frac{d}{d t} e_{k}(t, s ; x, \xi)+p(t ; x, \xi) e_{k}(t, s ; x, \xi) \\
& \quad=-\sum_{\nu=1}^{k} \sum_{|\alpha|=\nu} \frac{1}{\alpha!} p^{(\alpha)}(t ; x, \xi) e_{k-\nu,(\alpha)}(t, s ; x, \xi) \tag{2.10}
\end{align*}
$$

with the initial condition $e_{k}(s, s ; x, \xi)=0$. Differentiating (2.10) with respect to x and ξ, and using (2.2) we have (2.7) for the case $k \geqq 1$.

Remark 1. For a scalor operator, the above conditions (2.2), (2.3) coincide with assumption (0.2), (0.3) in C. Tsutsumi [4].

Remark 2. When (2.1) is a Petrovskii-parabolic system, the above conditions are satisfied with

$$
\lambda(t ; x, \xi)=c\langle\xi\rangle^{m} .
$$

3. Construction of fundamental solutions. Theorem 2. Under
the assumption (i), (ii) in § 2, we can construct a symbol e(t,s;x, $)$ $\in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \delta}^{0}\right)$ which satisfies the following conditions:
(i) $e\left(t, 0 ; x, D_{x}\right)$ is the fundamental solution of (2.1), i.e. $e(t, 0 ; x, \xi)$ satisfies the equation

$$
\left\{\begin{array}{l}
\frac{d}{d t} e(t, 0 ; x, \xi)+p(t ; x, \xi) \circ e(t, 0 ; x, \xi)=0 \quad 0<t<T \tag{3.1}\\
e(0,0 ; x, \xi)=I
\end{array}\right.
$$

(ii) For sufficiently large N, let

$$
\begin{equation*}
r_{N}(t, s ; x, \xi)=e(t, s ; x, \xi)-\sum_{k=0}^{N} e_{k}(t, s ; x, \xi) \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
(t-s)^{-1} r_{N}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\rho, \hat{\delta}}^{m-(\rho-\delta)(N+1)}\right) \tag{3.3}
\end{equation*}
$$

Proof. Let

$$
f_{N}(t, s ; x, \xi)=\sum_{k=0}^{N} e_{k}(t, s ; x, \xi)
$$

and let

$$
q_{N}(t, s ; x, \xi)=-\left(\frac{d}{d t} f_{N}(t, s ; x, \xi)+p(t ; x, \xi) \circ f_{N}(t, s ; x, \xi)\right)
$$

Then (2.7), (2.8) and (2.10) yield the estimate

$$
\begin{equation*}
\left|q_{N(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{m-(\rho-\delta)(N+1)-\rho|\alpha|+\delta|\beta|} . \tag{3.4}
\end{equation*}
$$

Take N such that $m-(\rho-\delta)(N+1)<-n$ and let $\varphi_{1}(t, s ; x, \xi)=q_{N}(t, s ; x, \xi)$ and for $j=2,3, \cdots$ let

$$
\begin{align*}
& \varphi_{j}(t, s ; x, \xi) \\
& \quad=\int_{s}^{t} d s_{1} \int_{s}^{s_{1}} d s_{2} \cdots \int_{s}^{s_{j-2}} q_{N}\left(t, s_{1} ; x, \xi\right) \circ q_{N}\left(s_{1}, s_{2} ; x, \xi\right) \circ \tag{3.5}
\end{align*}
$$

$$
\cdots \circ q_{N}\left(s_{j-1}, s ; x, \xi\right) d s_{j-1} .
$$

Then as the proof of Proposition 3 in C. Tsutsumi [4], where the calculus of multiple symbols plays an important role, we have

$$
\begin{equation*}
\left|\varphi_{j(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta}^{j} \frac{(t-s)^{j-1}}{(j-1)!}\langle\xi\rangle^{m-\rho|\alpha|+\bar{\delta}|\beta|-(\rho-\delta)(N+1)} . \tag{3.6}
\end{equation*}
$$

Thus we can define $\varphi(t, s ; x, \xi)$ by

$$
\begin{equation*}
\varphi(t, s ; x, \xi)=\sum_{j=1}^{\infty} \varphi_{j}(t, s ; x, \xi) \tag{3.7}
\end{equation*}
$$

Since $\varphi(t, s ; x, \xi)$ satisfies the integral equation
(3.8) $\varphi(t, s ; x, \xi)=q_{N}(t, s ; x, \xi)+\int_{s}^{t} q_{N}(t, \sigma ; x, \xi) \circ \varphi(\sigma, s ; x, \xi) d \sigma$ and has the estimate

$$
\begin{equation*}
\left|\varphi_{(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\rho|-(\rho-\delta)(N+1)}, \tag{3.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
r_{N}(t, s ; x, \xi)=\int_{s}^{t} f_{N}(t, \sigma ; x, \xi) \circ \varphi(\sigma, s ; x, \xi) d \sigma \tag{3.10}
\end{equation*}
$$

and (3.3).

References

[1] Kumano-go, H.: Pseudo-differential operators of multiple symbol and the Calderon-Vaillancourt theorem (to appear).
[2] Kumano-go, H., and Tsutsumi, C.: Complex powers of hypoelliptic pseudodifferential operators with applications. Osaka J. Math., 10, 147-174 (1973).
[3] Nagase, M., and Shinkai, K.: Complex powers of non-elliptic operators. Proc. Japan Acad., 46, 779-783 (1970).
[4] Tsutsumi, C.: The fundamental solution for a degenerate parabolic pseudodifferential operator. Proc. Japan Acad., 50, 11-15 (1974).

