74. A Generalization of Bieberbach's Example

By Masahide Като
Department of Mathematics, Rikkyo University, Tokyo
(Comm. by Kunihiko Kodaira, M. J. A., June 11, 1974)

1. Bieberbach constructed an example of a biholomorphic mapping of \boldsymbol{C}^{2} onto a proper open subset of \boldsymbol{C}^{2} ([1], see also [3]). His construction depends on the following fact. Let $g: z \rightarrow g(z)$ be a complex analytic automorphism of C^{2} of which the origin 0 is a fixed point $g(0)$ $=0$. The automorphism g induces a linear transformation of the tangent space $T_{0}\left(\boldsymbol{C}^{2}\right)\left(\simeq \boldsymbol{C}^{2}\right)$ of \boldsymbol{C}^{2} at 0 . Assume that the eigenvalues α_{1}, α_{2} of the linear transformation satisfy $1>\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right|$. Then the set

$$
U=\left\{z \in C^{2}: \lim _{\nu \rightarrow+\infty} g^{\nu}(z)=0\right\}
$$

is complex analytically isomorphic to C^{2}. The purpose of this paper is to generalize the above fact. Namely we shall prove

Theorem. Let X be a complex space of dimension m. Assume that there exists a complex analytic automorphism g and a point $0 \in X$ such that $g(0)=0$ and $g^{\nu}(z) \rightarrow 0(\nu \rightarrow+\infty)$ for any point $z \in X$. Then X is complex analytically isomorphic to an affine variety. If, moreover, X is non-singular at 0 , then $X \simeq \boldsymbol{C}^{m}$.

In [2], it is shown that the latter statement holds and that, if X is singular, X can be embedded into C^{n} as a closed subvariety which is invariant under a contracting complex analytic automorphism \tilde{g} of \boldsymbol{C}^{n} such that $\tilde{g}(0)=0$ and $\tilde{g}_{\mid X}=g$, where 0 denotes the origin of C^{n}. Let $\left(z_{1}, \cdots, z_{n}\right)$ be a standard system of coordinates of \boldsymbol{C}^{n}. We may assume that \tilde{g} has the following form;

$$
\begin{align*}
& z_{1}^{\prime}=\alpha_{1} z_{1} \\
& z_{2}^{\prime}=z_{1}+\alpha_{1} z_{2} \\
& \vdots \\
& z_{r_{1}}^{\prime}=z_{r_{1}-1}+\alpha_{1} z_{r_{1}} \tag{1}\\
& z_{r_{1+1}}=\alpha_{2} z_{r_{1}+1}+P_{r_{1}+1}\left(z_{1}, \cdots, z_{r_{1}}\right) \\
& \vdots \\
& z_{r_{1+}+r_{2}}^{\prime}=z_{r_{1}+r_{2}-1}+\alpha_{2} z_{r_{1}+r_{2}}+P_{r_{1}+r_{2}}\left(z_{1}, \cdots, z_{r_{1}}\right) \\
& z_{r_{1}+r_{2}+1}^{\prime}=\alpha_{3} z_{r_{1}+r_{2}+1}+P_{r_{1}+r_{2}+1}\left(z_{1}, \cdots, z_{r_{1}}, z_{r_{1+1}}, \cdots, z_{r_{1+}+r_{2}}\right) \\
& \vdots \\
& z_{n}^{\prime}=z_{n-1}+\alpha_{\mu} z_{n}+P_{n}\left(z_{1}, \cdots, z_{r_{1}+\cdots+r_{\mu-1}}\right),
\end{align*}
$$

where $1>\left|\alpha_{1}\right| \geq\left|\alpha_{2}\right| \geq \cdots \geq\left|\alpha_{\mu}\right|>0$ and $P_{j}\left(r_{1}+\cdots+r_{s}<j \leq r_{1}+\cdots+r_{s+1}\right)$ are finite sums of monomials $z_{1}^{m} \cdots z_{r_{s}}^{m r_{s}}$ which satisfy $\alpha_{r_{s}+1}=\alpha_{1}^{m_{1}} \cdots \alpha_{r_{s}}^{m r_{s}}$, $m_{1}+\cdots+m_{r_{s}} \geq 2$ and $m_{l}>0$ ([4], [5]).
2. Since the number of irreducible branches of X at 0 is finite, X has a finite number of irreducible components $X_{j}(j=1,2, \cdots)$. Hence there exists a positive integer l such that \tilde{g}^{l} acts on each X_{j} as a contracting automorphism which has the similar form to (1). Therefore we may assume that X is an irreducible subvariety.

Lemma 1. Let Z be a \tilde{g}-invariant subvariety in C^{n} such that $Z \supset X$ and $\operatorname{dim} Z>\operatorname{dim} X$. Then there exists a non-constant holomorphic function f on Z such that $\tilde{g}^{*} f=\alpha f(0<|\alpha|<1)$ and $f_{1 X}=0$.

Proof. It is clear that both Z and X contain the origin $0 \in C^{n}$. Let D be a relatively compact neighborhood of 0 in Z such that $\tilde{g}(\bar{D}) \subset D$, where \bar{D} denotes the closure of D in Z. Let \mathcal{B} be a vector space of holomorphic functions defined by

$$
\mathscr{B}=\left\{\begin{array}{ll}
f: & f \text { is a bounded holomorphic function } \\
\text { on } D \text { such that } f_{\mid X \cap D}=0
\end{array}\right\} .
$$

We define the norm $\left\|\|_{D}\right.$ for $f \in \mathcal{B}$ by

$$
\|f\|_{D}=\sup _{z \in D}|f(z)| .
$$

Then $\left(\mathscr{B},\| \|_{D}\right)$ is clearly a Banach space. The linear mapping $\tilde{g}^{*}: \mathcal{B}$ $\rightarrow \mathcal{B}$ defined by $\left(\tilde{g}^{*} f\right)(z)=f(\tilde{g}(z))$ is a compact operator by Vitali's theorem. It is easy to see that $\left\|\tilde{g}^{*}\right\|_{D} \leq 1$ and $\left\|\tilde{g}^{*} f\right\|_{D}=\|f\|_{D}$ implies f $=0$. Now we shall show that there exists a non-zero element $f_{0} \in \mathcal{B}$ such that

$$
\tilde{g}^{*} f_{0}=\alpha f_{0} \quad(0<|\alpha|<1) .
$$

Put
(2)

$$
R(\lambda)=\left(I-\lambda \tilde{g}^{*}\right)^{-1},
$$

where I denotes the identity operator. Since \tilde{g}^{*} is a compact operator, any spectrum except 0 is an eigenvalue ([7]). Hence if there is no such f_{0}, then $R(\lambda)$ is an entire function of λ on C. This implies that the radius of the circle of convergence of the Taylor expansion of (2) is infinite, i.e., $\lim _{\nu \rightarrow+\infty} \nu \sqrt{\left\|\tilde{g}^{* \nu}\right\|_{D}}=0$. This is equivalent to saying that for any $\varepsilon>0$, there exists an integer ν_{0} such that
(3)
$\left\|\tilde{g}^{* \nu}\right\|_{D}<\varepsilon^{\nu}$
for $\nu>\nu_{0}$. Let $\mathbf{m}_{z, 0}$ denote the maximal ideal of $\mathcal{O}_{z, 0}, \rho$ a positive integer such that there exists an element $h \in \mathscr{B}$ which is not contained in $\mathbf{m}_{z, 0}^{\rho+1}$. Fix a positive number ε such that $\varepsilon<\left|\alpha_{i}\right|^{\rho+1}$ for all $i(i=1,2, \cdots, \mu)$. Then

$$
\left\|\varepsilon^{-\nu} \tilde{g}^{* \nu} h\right\|_{D}>\|h\|_{D}
$$

for sufficiently large ν. But this contradicts (3). Hence there exists a non-zero element $f_{0} \in \mathcal{B}$ such that $\tilde{g}^{*} f_{0}=\alpha f_{0}(0<|\alpha|<1)$. For every positive integer ν, we have

$$
\begin{equation*}
f_{0}(z)=\alpha^{-\nu} f_{0}\left(\tilde{g}^{\nu}(z)\right) \quad(z \in D) \tag{4}
\end{equation*}
$$

Since $\alpha^{-\nu} \tilde{g}^{* \nu} f_{0}$ is defined on $\tilde{g}^{-\nu}(D)$ and $\bigcup_{\nu} \tilde{g}^{-\nu}(D)=Z$, it follows from (4) that f_{0} can be continued analytically to a holomorphic function f on Z
such that $\tilde{g}^{*} f=\alpha f$. It is clear that $f_{1 X}=0$.
Q.E.D.

Denote by $\|z\|$ the norm of the point $z=\left(z_{1}, \cdots, z_{n}\right) \in C^{n}$ defined by $\|z\|=\left|z_{1}\right|+\cdots+\left|z_{n}\right|$.

Lemma 2. Let Z be a \tilde{g}-invariant subvariety in C^{n} and f a holomorphic function on Z which satisfies the equality

$$
\begin{equation*}
\tilde{g}^{*} f=\alpha f \quad(0<|\alpha|<1) \tag{5}
\end{equation*}
$$

Then f satisfies the following inequality;

$$
\begin{equation*}
|f(z)| \leq M(1+\|z\|)^{N}, \tag{6}
\end{equation*}
$$

where M and N are positive constants which are independent of $z \in Z$.
Proof. Let K be a closed small neighborhood of $0 \in \boldsymbol{C}^{n}$ defined by $\|z\| \leq \varepsilon$. First we estimate by $\|z\|$ the minimum integer ν such that $\tilde{g}^{\nu}(z) \in K$. By (1), the j-th coordinate $\left(r_{1}+\cdots+r_{s}<j \leq r_{1}+\cdots+r_{s+1}\right)$ of the point $\tilde{g}^{\nu}(z)$ is given by

$$
\left(\tilde{g}^{\nu}(z)\right)_{j}=\alpha_{s+1}^{\nu}\left\{z_{j}+Q_{j}\left(\nu, z_{1}, \cdots, z_{j-1}\right)\right\},
$$

where Q_{j} is a polynomial of $\nu, z_{1}, \cdots, z_{j-1}$. Hence we get

$$
\left\|\tilde{g}^{\nu}(z)\right\| \leq \sum_{j}\left|\alpha_{s+1}\right|^{\nu}\left\{\left|z_{j}\right|+\left|Q_{j}\left(\nu, z_{1}, \cdots, z_{j-1}\right)\right|\right\} .
$$

Then it is easy to see that, for some positive constants A, B and β ($\left|\alpha_{i}\right|<\beta<1$ for all i), the following inequality holds;

$$
\left\|\tilde{g}^{\nu}(z)\right\| \leq A \beta^{\nu}(1+\|z\|)^{B} .
$$

Let ν be the least integer such that $\nu>-(\log \beta)^{-1} \cdot \log \left(A(1+\|z\|)^{B} / \varepsilon\right)$. Then $\left\|\tilde{g}^{\nu}(z)\right\| \leq \varepsilon$, therefore $\tilde{g}^{\nu}(z) \in K$. Then, by (5),

$$
\begin{aligned}
|f(z)| & =\left|\alpha^{-\nu} f\left(\tilde{g}^{\nu}(z)\right)\right| \\
& \leq|\alpha|^{-\nu}\|f\|_{K} \quad\left(\|f\|_{K}=\sup _{z \in K}|f(z)|\right) \\
& \leq|\alpha|^{\left.(\log \beta)-1 \cdot \log (A(1+\|z\| \mid))^{\prime} / \varepsilon\right)-1} \cdot\|f\|_{K} \\
& =\left(A(1+\|z\|)^{B} / \varepsilon\right)^{(\log |\alpha|) / \log \beta} \cdot\left|\alpha^{-1}\right| \cdot\|f\|_{K} .
\end{aligned}
$$

Putting $N=B(\log |\alpha|) / \log \beta$ and $M=(A / \varepsilon)^{N / B} \cdot\left|\alpha^{-1}\right| \cdot\|f\|_{K}$, we get

$$
|f(z)| \leq M(1+\|z\|)^{N} . \quad \text { Q.E.D. }
$$

W. Rudin [6] proved the following

Theorem 3. An analytic subvariety V of pure dimension k in \boldsymbol{C}^{n} is algebraic if and only if V lies in some algebraic region of type (k, n).

By [6], a set Ω in C^{n} will be called an algebraic region of type (k, n) if there are vector subspaces E, F in C^{n} and a positive real numbers A, B such that the following conditions hold: $\operatorname{dim} E=k, \operatorname{dim} F=n-k$, $C^{n}=E \oplus F$ (direct sum) and Ω consists precisely of the points $z \in C^{n}$ satisfying the inequality

$$
\left\|z^{\prime \prime}\right\| \leq A\left(1+\left\|z^{\prime}\right\|\right)^{B},
$$

where $z=z^{\prime}+z^{\prime \prime}, z^{\prime} \in E, z^{\prime \prime} \in F$.
Lemma 4. Let Z be a \tilde{g}-invariant pure dimensional affine subvariety of C^{n}, f a holomorphic function on Z such that $\tilde{g}^{*} f=\alpha f(0<|\alpha|$ <1). Then the zero locus $Y=\{z \in Z: f(z)=0\}$ is a \tilde{g}-invariant affine subvariety of \boldsymbol{C}^{n}.

Proof. It is sufficient to show that the graph

$$
\Gamma_{f}=\{(z, w) \in Z \times C: w=f(z)\}
$$

is an affine subvariety of $\boldsymbol{C}^{n} \times \boldsymbol{C}=\boldsymbol{C}^{n+1}$. By Theorem 3, there exists an algebraic region of type (k, n) such that

$$
\begin{equation*}
Z \subset\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in C^{k} \times C^{n-k}:\left\|z^{\prime \prime}\right\| \leq A\left(1+\left\|z^{\prime}\right\|\right)^{B}\right\} \tag{7}
\end{equation*}
$$

where we can choose the subspace C^{k} so that there exists an algebraic branched covering $\theta: Z \rightarrow C^{k}$. By (6), we have

$$
\Gamma_{f} \subset\left\{(z, w) \in Z \times C:|w| \leq M(1+\|z\|)^{N}\right\} \subset C^{n+1} .
$$

Hence, by (7), for points ($z, w) \in \Gamma_{f}$,

$$
\begin{align*}
|w| & \leq M\left(1+\left\|z^{\prime}\right\|+\left\|z^{\prime \prime}\right\|\right)^{N} \leq M\left(1+\left\|z^{\prime}\right\|+A\left(1+\left\|z^{\prime}\right\|\right)^{B}\right)^{N} \tag{8}\\
& \leq M_{1}\left(1+\left\|z^{\prime}\right\|\right)^{N_{1}}
\end{align*}
$$

where M_{1} and N_{1} are some positive constants. Thus combining (8) with (7), we get

$$
\begin{aligned}
\left\|\left(z^{\prime \prime}, w\right)\right\| & \leq A\left(1+\left\|z^{\prime}\right\|\right)^{B}+M_{1}\left(1+\left\|z^{\prime}\right\|\right)^{N_{1}} \\
& \left.\leq M_{2}\left(1+\left\|z^{\prime}\right\|\right)^{N_{2}} \quad \text { (for some } M_{2} \text { and } N_{2}\right) .
\end{aligned}
$$

Hence the graph Γ_{f} is contained in an algebraic region of type ($k, n+1$). Hence, by Theorem 3, Γ_{f} is an affine subvariety, since Γ_{f} is pure dimensional. Q.E.D.

Finally we prove the following
Lemma 5. Let Z be a \tilde{g}-invariant pure dimensional affine subvariety of C^{n} such that $Z \supset X$ and $\operatorname{dim} Z>\operatorname{dim} X$. Then there exists a \tilde{g}-invariant pure dimensional affine subvariety Y of C^{n} such that $Z \supset Y$ $\supset X$ and $\operatorname{dim} Z=\operatorname{dim} Y+1$. If $\operatorname{dim} Z=\operatorname{dim} X+1$, then X is an affine subvariety of \boldsymbol{C}^{n}.

Proof. Let Z_{0} be an irreducible component of Z such that $Z_{0} \supset X$. Put $W=\bigcup_{\nu \in Z} \tilde{g}^{\nu}\left(Z_{0}\right)$. Then W is a \tilde{g}-invariant pure dimensional affine subvariety of C^{n} which consists of the irreducible components of Z. Applying Lemmas 1 and 4 to W, we get a \tilde{g}-invariant affine subvariety Y defined by f which is a non-constant holomorphic function on W. Now Y contains no irreducible components of W. In fact, if Y contains an irreducible component of W, then f vanishes identically on W. Hence Y is pure dimensional and $\operatorname{dim} Y=\operatorname{dim} Z-1$. The latter statement is clear, since X is an irreducible component of the affine variety Y.
3. By Lemma 5, our main theorem can easily be proved by the induction on the codimension of X in Z. (Note that Z may be equal to C^{n}.)

Acknowledgment. The author would like to express his hearty thanks to Prof. K. Saito who kindly read through the manuscript and pointed out that the original proof was incomplete.

References

[1] Bieberbach, L.: Beispiel zweier gauzer Funktionenzweier komplexer Variablen welche eine schlicht volumetreue Abbildung des R_{4} auf einen Teil seiner selbest vermitteln. Preuss. Akad. Wiss. Sitzungsber., pp. 476-479 (1933).
[2] Kato, M.: Complex structures on $S^{1} \times S^{5}$ (to appear).
[3] Kodaira, K.: Holomorphic mappings of polydisks into compact complex manifolds. J. Diff. Geom., 6, 33-46 (1971).
[4] Reich, L.: Das Typenproblem bei formal-biholomorphen Abbildungen mit anziehendem Fixpunkt. Math. Ann., 179, 227-250 (1969).
[5] ——: Normalformen biholomorpher Abbildungen mit anziehendem Fixpunkt. Math. Ann., 180, 233-255 (1969).
[6] Rudin, W.: A geometric criterion for algebraic varieties. J. Math. Mech., 17 (7), 671-683 (1968).
[7] Yoshida, K.: Functional Analysis. Springer (1964).

