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The Hurewicz Isomorphism Theorem on Homotopy
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(Comm. by Kenjiro SHODA, M. J. A., Sel3t. 12, 1974)

1. Introduction. Let (X, A, x0) be a pair of pointed topological
spaces. Let {lIlt e A} be the amily of all locally finite normal open
covers of X such that each 1 has exactly one member containing x0.
Then we have an inverse system {(X,A,xo),[p,],A} in the pro-cate-
gory of the homotopy category of pairs of pointed CW complexes by
taking the nerves of 1I and 1I A, by ordering A by means of refine-
ments o covers, and by taking the homotopy classes of canonical pro-
jections. We call this inverse system the Cech system o (X,A, Xo).
The Cech system o (X, A) is defined similarly by using all locally finite
normal open covers of X.

We define the n-th (Cech) homotopy pro-group ,(X, A, x0) to be a
pro-group {z(X,A, x0), (p,),//)} (n>=2);zl(X,A,xo)-{zl(X,A,xo),
z(p,,), A} is considered as a pro-object in the category of pointed sets
and base-point preserving maps.

The n-th (Cech) homology pro-group H(X, A) with coefficients in
the additive group of integers is defined similarly by using the Cech
system of (X,A). Since {1I1 e A} described above is cofinl in the
family of all locally finite normal open covers of X, the inverse system
{H(X, A), H(pw), A} is isomorphic to H(X, A) in the category of
pro-groups. Hence, the set of the Hurewicz homomorphisms
n(X, A, Xo) z(X, A, Xo)-H(X, A) for 2 e A determines a mor-
phism .(X, A, Xo)" z(X, A, Xo)-oH(X, A) in the category of pro-
groups, which we shall call the Hurewicz morphism.

A subspace A of a space X is said to be P-embedded in X if every
locally finite normal open cover of A has a refinement which can be
extended to a locally finite normal open cover of X. If A is P-embed-
ded in X, {(A, x0), [p, (A,, x0,)], A}, which is obtained from the ech
system of (X,A, xo), is isomorphic to the (ech system of (A, xo). A
pro-group G-{G,,,/} is a zero-object, G-0 in notation, if G is
isomorphic to a pro-group consisting of a single trivial group, or equiv-
alently, if for each e /there is ’ e A with ’ such that ,--0.

In this paper we shall establish the following analogue of the
Hurewicz isomorphism theorem.

Theorem 1. Let (X, A, Xo) be a pair of pointed, cornected, topolo-
gical spaces such that z(X,A, xo)-O for k with l_<_kn(n>=l). The
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Hk(X,A)=O for l<=k_<n. If A is P-embedded in X and l(A, x0)=0
then the Hurewicz morphism /(X, A, Xo) "z/(X, A, Xo)H/(X, A)
is an isomorphism.

For the absolute Herewicz isomorphism theorem, its analogue was
proved by K. Kuperberg [2] for compact metric spaces,) and for the
relative Hurewicz isomorphism theorem its analogue was proved by
T. Porter [6] for movable pairs of metric compacta with a certain con-
dition. These results, however, are concerned with the limit groups
of homotopy and homology pro-groups, but they are direct consequences
of our Theorem 1.

2. Some lemmas. Let be a category. Let X={Xa, p,, A}
and Y={Y, q,, M} be inverse systems (over directed sets) in . A map
of inverse systems, or simply a system map, from X to Y consists of
a map 0" M-A and a collection {f I/ e M} of morphisms f" X)-.Y,
such that for every/,/’e M with/</’ there is e A such that (Z),
(/’) < and fP()a= q,f,P(,)a. Two system maps f {, f, M} and
g={@, g,M} from X to Y is called equivalent if for each/ e M there
is e A such that (/)<,@(/)< and fp()=gp,(,). The equivalence
class containing f is denoted by [f]. There is a category whose ob-
jects are inverse systems in and whose morphisms are equivalence
classes of system maps. It is called the pro-category of and is de-
noted by pro ().

If A’ is a cofinal subset of A, then {X, p,, A} is isomorphic to
{X, p,, A’} in pro ().

Lemma 1. Let (A, ) be a directed set with order . Let -< be
another order in A such that (i)
and (iii), 2’-4/’/2-</. Then (A,-4) is also a directed set and
any inverse system (X,pu,(A,-<)} in is isomorphic to {X,p,,
(A, -<)} in pro ().

Proof. The first part is obvious. For any e A, we choose an
element (2) of A so that 2-4(), and let us define f" Xt()X by f
--po(). On the other hand, let us put g=I"XX. Then
f-{,f, (A, -4).}. {X, p,, (A, <)}-{X, p,, (A, -)} and g {1, g, (A,
<)}" {X, p,, (A, -)}-{X, p,, (A, )} are system maps, and [f][g]-1,
[g][f]-- 1.

Lemma 2. Let X={X,p,,A} and Y={Y, q,,A} be inverse sys-
tems in over the same directed set A. Suppose that for each e A
there exists a morphism f" X-Y and for any ,t e A with there
exists " Y,-X such that

1) The proof in [4, 6] for topological spaces is incorrect. Our proof of
Theorem 1 is its rectification.
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Then f={1,f, A} defines a system map from X .to Y which induces an
isomorphism in pro ().

Proof. For , , ,, e A such that,, we have
( 2 ) q--q--p%q,
since %q=pp%=p,+,q,=%q,q,. For ech 2 e A let us choose
an element a() e A so that 2a(2), and define g"
If ’ Z" and ’ Z’, then by (1) and (2) we have ,,.q.
=,,q,-,.q.=p,%.q.. Hence g={a,g,A} defines a system map
from Y to X. Since [f][g]=l and [g][f]=l, this completes the proof
of Lemma 2.

Lemma 3. Let p+," (X,A,x)(X+,A+,x+), Oin, be
continuous maps of pairs of pointed connected simplicial complexes such
that

+(p+,)=0" +(X,A, x)=+(X+,A+,
for 0 k n. Then there is a continuous map (Xo, X U Ao, Xo)(X,
A, x) such that

P,n- Po (Xo, Ao, Xo)(X, A, x),
where X is the k-skeleton of Xo and ]" (Xo, Ao, x)(Xo,X Ao, Xo) is
the inclusion map. Moreover, if =(po[(Ao, Xo))= 0 and u(po[(Xo, Xo))
=0, then can be chosen so that (X)=x.

Proof. In what follows, maps are continuous. Assume that
(Po (Ao, Xo))=0 and =(Po (Xo, Xo))=0. Putting Lo=XI UXo 0 and
L=(XAo)IXoO for lgkn, where I=[0,1], let us construct
maps.z LX,k=O, 1,..., n with the following properties.
( 3 ) Xo(X, 0) x or x e X0, Zo(A I) Ao
(4) (x, 1)=x for xeX, (AoI)A;
( 5 ]L_=p,__ or k1
(6) (x,1) eA for x e X, k0.

First, let o be defined over Xo 0 by (3). For x e X] let o(X, t) be
a path from x to Xo so that it lies in Ao if x e A. Next, let E be a 1-
simplex in Xo (resp. Ao). Then o defines a map a from (E 0 U E I,
E1) to (Xo, xo) (resp. (Ao, xo)). Since (Po](Xo, xo))=0 and
(po](Ao, Xo))=0, Poa is homotopic in X (resp. A) relative to E 1 to
a map fromE0 EI to x. This homotopy yields an extension
of Poa over E I such that fl(E 1) x and fl(E I) A if E Ao.
Hence PoZo is extended to a map " Lo X IX such that (X 1)
=x and z(AI)cA. Then by the homotopy extension theorem
is extended over Lo U (X I) (Ao I) such that z(A0 I) A. Since
L Lo U (X I) (Ao I), the extended map satisfies (4), (5) and (6)
with k= 1.

For k2, suppose that
_

has been constructed. Let E be a k-
simplex in Xo--Ao. Then Z- induces a map a from (E 0 U E I,
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R 1, x 1) to (X_,, A_, x_) where x e X0. Since u(p,_,)
=0, p._,a is homotopic relative to E1 to a map ,rom E0UE
I to A. This homotopy yields an extension/9 o p,_,a over EI
such that fl(EI)cA. Hence we can find Z satisfying (5) and (6).
Therefore by induction on k we can find Z satis2ying (5) and (6) or all
k with 2_<k<=n. Here we note that ;(x, 1)=x= or x e X.

Finally, by the homotopy extension theorem there is a map 0" X0
IX such that.01L=z. Let us put (x)=O(x, 1) or x e X0. Then
@ has the desired properties. This proves the second part o* Lemma
3.

The first part is proved similarly; it is essentially due to Mardeid
[3].

3. Proof of Theorem 1. Assume zl(A, xo)-O and rl(X,A, xo)
=0. Then by the exactness of the sequence of homotopy pro-groups
(cf. [3], [5])we have z(X, x0)=0. Hence for each e A there is / e A
which admits a sequence {0, 2, "",} in A such that
/ and p+" (X,,A,, Xo,)(X,+,A,/,, Xo,+,), i=0, 1, ..., n-1 satis-
fy the conditions in Lemma 3 (with the subscripts i there replaced by
2). In such a case we write </. Then by Lemmas 1 and 3 the in-
verse system {(X, A, x0), [pa,], (A, -<)} is isomorphic to the (ech system
of (X, A, x0) and or ,/ e A with . -4/ there exists a map ." (X., X U A.,
Xo.)(X, A, Xo) such that p,.] (X,, A,,, Xo)(X, A, Xo) and
.(X$ U A,)cA, .(X) x0, where ]." (X,A,, Xo.)---.(X.,X$ A., Xo.) is
the inclusion map. Let us now construct the quotient space Y.=X/X
and put B,,=(X’UA.)/X; let g," (X,,X’UA,,Xo,,)(Y,,B,, Yo,) be the
quotient map. Then there is a map 4x." (Y., B., yo,,)---.(X, A, Xo) such
that -.g. It is to be noted that r(Y.,B,,yo.)=O or
z(B., y0.)=0, and (Y., B.) is a pair of connected CW complexes. Thus,
the usual Hurewicz homomorphism

q)n+(Y,,,B., Yo.)" zn+I(Y,,,B., yo.)oH+I(Y.,B)
is an isomorphism. If we put

t, +() q+(Y.. B,. yo.)- H.+(g.],)
H.+(X,. A,)--->z. +(X. A. Xo).

then we have
8, +(X., A,, x0,) --Wn/(P,),

Therefore, by Lemma 2, {1, )n/l(X,A,xo), (A, -4)} defines an isomor-
phism from {/(X, A, x0), +(p,), (A, -4)} to {H/(X, A), H/(p,),
(A, )}. Thus the second part o Theorem 1 is proved.

The first part is proved similarly (but more easily since H(X,,
X$ [J A,)=0 for
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