105. The Hurewicz Isomorphism Theorem on Homotopy and Homology Pro-Groups

By Kiiti Morita

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1974)

§1. Introduction. Let (X, A, x_0) be a pair of pointed topological spaces. Let $\{\mathfrak{U}_{\lambda} | \lambda \in A\}$ be the family of all locally finite normal open covers of X such that each \mathfrak{U}_{λ} has exactly one member containing x_0 . Then we have an inverse system $\{(X_{\lambda}, A_{\lambda}, x_{0\lambda}), [p_{\lambda\lambda'}], A\}$ in the pro-category of the homotopy category of pairs of pointed *CW* complexes by taking the nerves of \mathfrak{U}_{λ} and $\mathfrak{U}_{\lambda} \cap A$, by ordering Λ by means of refinements of covers, and by taking the homotopy classes of canonical projections. We call this inverse system the Čech system of (X, A, x_0) . The Čech system of (X, A) is defined similarly by using all locally finite normal open covers of X.

We define the *n*-th (Čech) homotopy pro-group $\pi_n(X, A, x_0)$ to be a pro-group $\{\pi_n(X_{\lambda}, A_{\lambda}, x_{0\lambda}), \pi_n(p_{\lambda\lambda'}), \Lambda\}$ $(n \ge 2)$; $\pi_1(X, A, x_0) = \{\pi_1(X_{\lambda}, A_{\lambda}, x_{0\lambda}), \pi_1(p_{\lambda\lambda'}), \Lambda\}$ is considered as a pro-object in the category of pointed sets and base-point preserving maps.

The *n*-th (Čech) homology pro-group $H_n(X, A)$ with coefficients in the additive group of integers is defined similarly by using the Čech system of (X, A). Since $\{\mathfrak{ll}_{\lambda} | \lambda \in \Lambda\}$ described above is cofinal in the family of all locally finite normal open covers of X, the inverse system $\{H_n(X_{\lambda}, A_{\lambda}), H_n(p_{\lambda\lambda'}), A\}$ is isomorphic to $H_n(X, A)$ in the category of pro-groups. Hence, the set of the Hurewicz homomorphisms $\Phi_n(X_{\lambda}, A_{\lambda}, x_{0\lambda}) : \pi_n(X_{\lambda}, A_{\lambda}, x_{0\lambda}) \to H_n(X_{\lambda}, A_{\lambda})$ for $\lambda \in \Lambda$ determines a morphism $\Phi_n(X, A, x_0) : \pi_n(X, A, x_0) \to H_n(X, A)$ in the category of progroups, which we shall call the Hurewicz morphism.

A subspace A of a space X is said to be P-embedded in X if every locally finite normal open cover of A has a refinement which can be extended to a locally finite normal open cover of X. If A is P-embedded in X, $\{(A_2, x_{02}), [p_{12'}| (A_{2'}, x_{02'})], A\}$, which is obtained from the Čech system of (X, A, x_0) , is isomorphic to the Čech system of (A, x_0) . A pro-group $G = \{G_2, \phi_{22'}, A\}$ is a zero-object, G = 0 in notation, if G is isomorphic to a pro-group consisting of a single trivial group, or equivalently, if for each $\lambda \in A$ there is $\lambda' \in A$ with $\lambda < \lambda'$ such that $\phi_{22'} = 0$.

In this paper we shall establish the following analogue of the Hurewicz isomorphism theorem.

Theorem 1. Let (X, A, x_0) be a pair of pointed, connected, topological spaces such that $\pi_k(X, A, x_0) = 0$ for k with $1 \leq k \leq n$ $(n \geq 1)$. Then

K. MORITA

 $H_k(X,A)=0$ for $1 \leq k \leq n$. If A is P-embedded in X and $\pi_1(A, x_0)=0$ then the Hurewicz morphism $\Phi_{n+1}(X, A, x_0):\pi_{n+1}(X, A, x_0) \rightarrow H_{n+1}(X, A)$ is an isomorphism.

For the absolute Herewicz isomorphism theorem, its analogue was proved by K. Kuperberg [2] for compact metric spaces,¹⁾ and for the relative Hurewicz isomorphism theorem its analogue was proved by T. Porter [6] for movable pairs of metric compacta with a certain condition. These results, however, are concerned with the limit groups of homotopy and homology pro-groups, but they are direct consequences of our Theorem 1.

§2. Some lemmas. Let \Re be a category. Let $X = \{X_{\lambda}, p_{\lambda\lambda'}, A\}$ and $Y = \{Y_{\mu}, q_{\mu\mu'}, M\}$ be inverse systems (over directed sets) in \Re . A map of inverse systems, or simply a system map, from X to Y consists of a map $\phi: M \to A$ and a collection $\{f_{\mu} | \mu \in M\}$ of morphisms $f_{\mu}: X_{\phi(\mu)} \to Y_{\mu}$ such that for every $\mu, \mu' \in M$ with $\mu < \mu'$ there is $\lambda \in A$ such that $\phi(\mu)$, $\phi(\mu') < \lambda$ and $f_{\mu} p_{\phi(\mu)\lambda} = q_{\mu\mu'} f_{\mu'} p_{\phi(\mu')\lambda}$. Two system maps $f = \{\phi, f_{\mu}, M\}$ and $g = \{\psi, g_{\mu}, M\}$ from X to Y is called equivalent if for each $\mu \in M$ there is $\lambda \in A$ such that $\phi(\mu) < \lambda, \psi(\mu) < \lambda$ and $f_{\mu} p_{\phi(\mu)\lambda} = g_{\mu} p_{\psi(\mu)\lambda}$. The equivalence class containing f is denoted by [f]. There is a category whose objects are inverse systems in \Re and whose morphisms are equivalence classes of system maps. It is called the pro-category of \Re and is denoted by pro (\Re) .

If Λ' is a cofinal subset of Λ , then $\{X_{\lambda}, p_{\lambda\lambda'}, \Lambda\}$ is isomorphic to $\{X_{\lambda}, p_{\lambda\lambda'}, \Lambda'\}$ in pro (\Re) .

Lemma 1. Let $(\Lambda, <)$ be a directed set with order <. Let \prec be another order in Λ such that (i) $\lambda \prec \lambda' \Rightarrow \lambda \lt \lambda'$, (ii) $\forall \lambda \in \Lambda, \exists \mu \in \Lambda: \lambda \prec \mu$, and (iii), $\lambda \lt \lambda' \prec \mu' \lt \mu \Rightarrow \lambda \prec \mu$. Then (Λ, \prec) is also a directed set and any inverse system $\{X_{\lambda}, p_{\lambda\lambda'}, (\Lambda, \prec)\}$ in \Re is isomorphic to $\{X_{\lambda}, p_{\lambda\lambda'}, (\Lambda, \prec)\}$ in pro (\Re) .

Proof. The first part is obvious. For any $\lambda \in \Lambda$, we choose an element $\phi(\lambda)$ of Λ so that $\lambda \prec \phi(\lambda)$, and let us define $f_{\lambda} \colon X_{\phi(\lambda)} \to X_{\lambda}$ by $f_{\lambda} = p_{\lambda\phi(\lambda)}$. On the other hand, let us put $g_{\lambda} = 1 \colon X_{\lambda} \to X_{\lambda}$. Then $f = \{\phi, f_{\lambda}, (\Lambda, \prec)\} \colon \{X_{\lambda}, p_{\lambda\lambda'}, (\Lambda, \prec)\} \to \{X_{\lambda}, p_{\lambda\lambda'}, (\Lambda, \prec)\}$ and $g = \{1, g_{\lambda}, (\Lambda, \prec)\} \colon \{X_{\lambda}, p_{\lambda\lambda'}, (\Lambda, \prec)\} \to \{X_{\lambda}, p_{\lambda\lambda'}, (\Lambda, \prec)\}$ are system maps, and [f][g] = 1, [g][f] = 1.

Lemma 2. Let $X = \{X_{\lambda}, p_{\lambda\lambda'}, \Lambda\}$ and $Y = \{Y_{\lambda}, q_{\lambda\lambda'}, \Lambda\}$ be inverse systems in \Re over the same directed set Λ . Suppose that for each $\lambda \in \Lambda$ there exists a morphism $f_{\lambda} \colon X_{\lambda} \to Y_{\lambda}$ and for any $\lambda, \mu \in \Lambda$ with $\lambda < \mu$ there exists $\psi_{\lambda\mu} \colon Y_{\mu} \to X_{\lambda}$ such that

(1)
$$p_{\lambda\mu} = \psi_{\lambda\mu} f_{\mu}, \qquad f_{\lambda} \psi_{\lambda\mu} = q_{\lambda\mu}.$$

¹⁾ The proof in $[4, \S 6]$ for topological spaces is incorrect. Our proof of Theorem 1 is its rectification.

Then $f = \{1, f_{\lambda}, \Lambda\}$ defines a system map from X to Y which induces an isomorphism in pro (\Re).

Proof. For $\kappa, \lambda, \mu, \nu \in \Lambda$ such that $\kappa < \lambda < \mu < \nu$, we have

$$(2) \qquad \qquad \psi_{\kappa\lambda}q_{\lambda\nu} = \psi_{\kappa\mu}q_{\mu\nu} = p_{\kappa\lambda}\psi_{\lambda\mu}q_{\mu\nu}$$

since $\psi_{\epsilon\mu}q_{\mu\nu} = p_{\epsilon\lambda}p_{\lambda\mu}\psi_{\mu\nu} = p_{\epsilon\lambda}\psi_{\lambda\mu}q_{\mu\nu} = \psi_{\epsilon\lambda}q_{\lambda\mu}q_{\mu\nu}$. For each $\lambda \in \Lambda$ let us choose an element $\alpha(\lambda) \in \Lambda$ so that $\lambda < \alpha(\lambda)$, and define $g_{\lambda} \colon Y_{\alpha(\lambda)} \to X_{\lambda}$ by $g_{\lambda} = \psi_{\lambda,\alpha(\lambda)}$. If $\kappa < \kappa' < \mu < \nu$ and $\kappa < \lambda < \lambda' < \mu < \nu$, then by (1) and (2) we have $\psi_{\epsilon\kappa'}q_{\kappa'\nu} = \psi_{\epsilon\mu}q_{\mu\nu} = \psi_{\epsilon\lambda'}q_{\lambda'\nu} = p_{\epsilon\lambda}\psi_{\lambda\lambda'}q_{\lambda'\nu}$. Hence $g = \{\alpha, g_{\lambda}, \Lambda\}$ defines a system map from Y to X. Since [f][g] = 1 and [g][f] = 1, this completes the proof of Lemma 2.

Lemma 3. Let $p_{i+1,i}: (X_i, A_i, x_i) \rightarrow (X_{i+1}, A_{i+1}, x_{i+1}), 0 \leq i < n$, be continuous maps of pairs of pointed connected simplicial complexes such that

 $\begin{aligned} \pi_{k+1}(p_{k+1,k}) = 0 : \pi_{k+1}(X_k, A_k, x_k) \to \pi_{k+1}(X_{k+1}, A_{k+1}, x_{k+1}) \\ for \ 0 \leq k < n. \quad Then \ there \ is \ a \ continuous \ map \ \psi : (X_0, X_0^n \cup A_0, x_0) \to (X_n, A_n, x_n) \ such \ that \end{aligned}$

 $\psi j \simeq p_{n,n-1} \cdots p_{10} \colon (X_0, A_0, x_0) \rightarrow (X_n, A_n, x_n),$

where X_0^k is the k-skeleton of X_0 and $j: (X_0, A_0, x) \rightarrow (X_0, X_0^n \cup A_0, x_0)$ is the inclusion map. Moreover, if $\pi_1(p_{10}|(A_0, x_0)) = 0$ and $\pi_1(p_{10}|(X_0, x_0)) = 0$, then ψ can be chosen so that $\psi(X_0^1) = x_n$.

Proof. In what follows, maps are continuous. Assume that $\pi_1(p_{10}|(A_0, x_0))=0$ and $\pi_1(p_{10}|(X_0, x_0))=0$. Putting $L_0=X_0^0 \times I \cup X_0 \times 0$ and $L_k=(X_0^k \cup A_0) \times I \cup X_0 \times 0$ for $1 \leq k \leq n$, where I=[0,1], let us construct maps $\chi_k: L_k \to X_k, k=0, 1, \dots, n$ with the following properties.

(3) $\chi_0(x, 0) = x \text{ for } x \in X_0, \chi_0(A_0^0 \times I) \subset A_0;$

(4) $\chi_1(x, 1) = x_1$ for $x \in X_0^1$, $\chi_1(A_0 \times I) \subset A_1$;

(5) $\chi_k | L_{k-1} = p_{k,k-1} \chi_{k-1}$ for $k \ge 1$;

 $(6) \quad \chi_k(x,1) \in A_k \text{ for } x \in X_0^k, \ k \ge 0.$

First, let χ_0 be defined over $X_0 \times 0$ by (3). For $x \in X_0^0$ let $\chi_0(x, t)$ be a path from x to x_0 so that it lies in A_0 if $x \in A_0^0$. Next, let E^1 be a 1simplex in X_0 (resp. A_0). Then χ_0 defines a map α from $(E^1 \times 0 \cup \dot{E}^1 \times I, \dot{E}^1 \times 1)$ to (X_0, x_0) (resp. (A_0, x_0)). Since $\pi_1(p_{10}|(X_0, x_0)) = 0$ and $\pi_1(p_{10}|(A_0, x_0)) = 0$, $p_{10}\alpha$ is homotopic in X_1 (resp. A_1) relative to $\dot{E}^1 \times 1$ to a map from $E^1 \times 0 \cup \dot{E}^1 \times I$ to x_1 . This homotopy yields an extension β of $p_{10}\alpha$ over $E^1 \times I$ such that $\beta(E^1 \times 1) = x_1$ and $\beta(E^1 \times I) \subset A_1$ if $E^1 \subset A_0$. Hence $p_{10}\chi_0$ is extended to a map $\chi_1: L_0 \cup X_0^1 \times I \to X_1$ such that $\chi_1(X_0^1 \times 1)$ $= x_1$ and $\chi_1(A_0^1 \times I) \subset A_1$. Then by the homotopy extension theorem χ_1 is extended over $L_0 \cup (X_0^1 \times I) \cup (A_0 \times I)$ such that $\chi_1(A_0 \times I) \subset A_1$. Since $L_1 = L_0 \cup (X_0^1 \times I) \cup (A_0 \times I)$, the extended map χ_1 satisfies (4), (5) and (6) with k = 1.

For $k \ge 2$, suppose that χ_{k-1} has been constructed. Let E^k be a k-simplex in $X_0 - A_0$. Then χ_{k-1} induces a map α from $(E^k \times 0 \cup \dot{E^k} \times I)$,

No. 7]

 $\dot{E}^k \times 1, x \times 1$) to $(X_{k-1}, A_{k-1}, x_{k-1})$ where $x \in \dot{E}^k \cap X_0^0$. Since $\pi_k(p_{k,k-1}) = 0$, $p_{k,k-1}\alpha$ is homotopic relative to $\dot{E}^k \times 1$ to a map from $E^k \times 0 \cup \dot{E}^k \times I$ to A_k . This homotopy yields an extension β of $p_{k,k-1}\alpha$ over $E^k \times I$ such that $\beta(E^k \times 1) \subset A_k$. Hence we can find χ_k satisfying (5) and (6). Therefore by induction on k we can find χ_k satisfying (5) and (6) for all k with $2 \leq k \leq n$. Here we note that $\chi_n(x, 1) = x_n$ for $x \in X_0^1$.

Finally, by the homotopy extension theorem there is a map $\theta: X_0 \times I \rightarrow X_n$ such that $\theta | L_n = \chi_n$. Let us put $\psi(x) = \theta(x, 1)$ for $x \in X_0$. Then ψ has the desired properties. This proves the second part of Lemma 3.

The first part is proved similarly; it is essentially due to Mardešić [3].

§ 3. Proof of Theorem 1. Assume $\pi_1(A, x_0) = 0$ and $\pi_1(X, A, x_0)$ Then by the exactness of the sequence of homotopy pro-groups =0.(cf. [3], [5]) we have $\pi_1(X, x_0) = 0$. Hence for each $\lambda \in \Lambda$ there is $\mu \in \Lambda$ which admits a sequence $\{\lambda_0, \lambda_1, \dots, \lambda_n\}$ in Λ such that $\lambda < \lambda_n < \dots < \lambda_0$ $<\mu$ and $p_{\lambda_{i+1}\lambda_i}: (X_{\lambda_i}, A_{\lambda_i}, x_{0\lambda_i}) \rightarrow (X_{\lambda_{i+1}}, A_{\lambda_{i+1}}, x_{0\lambda_{i+1}}), i=0, 1, \cdots, n-1$ satisfy the conditions in Lemma 3 (with the subscripts i there replaced by λ_i). In such a case we write $\lambda \prec \mu$. Then by Lemmas 1 and 3 the inverse system $\{(X_{\lambda}, A_{\lambda}, x_{0\lambda}), [p_{\lambda\lambda'}], (\Lambda, \prec)\}$ is isomorphic to the Cech system of (X, A, x_0) and for $\lambda, \mu \in \Lambda$ with $\lambda \prec \mu$ there exists a map $\phi_{\lambda\mu}: (X_{\mu}, X_{\mu}^n \cup A_{\mu}, X_{\mu}^n \cup X_{\mu})$ $x_{0\mu} \rightarrow (X_{\lambda}, A_{\lambda}, x_{0\lambda})$ such that $p_{\lambda\mu} \simeq \phi_{\lambda\mu} j_{\mu} : (X_{\mu}, A_{\mu}, x_{0\mu}) \rightarrow (X_{\lambda}, A_{\lambda}, x_{0\lambda})$ and $\phi_{\lambda\mu}(X^n_{\mu}\cup A_{\mu})\subset A_{\lambda}, \phi_{\lambda\mu}(X^1_{\mu})=x_{0\lambda}, \text{ where } j_{\mu}:(X_{\mu},A_{\mu},x_{0\mu})\rightarrow (X_{\mu},X^n_{\mu}\cup A_{\mu},x_{0\mu}) \text{ is }$ the inclusion map. Let us now construct the quotient space $Y_{\mu} = X_{\mu}/X_{\mu}^{1}$ and put $B_{\mu} = (X_{\mu}^{n} \cup A_{\mu})/X_{\mu}^{1}$; let $g_{\mu} : (X_{\mu}, X_{\mu}^{n} \cup A_{\mu}, x_{0\mu}) \rightarrow (Y_{\mu}, B_{\mu}, y_{0\mu})$ be the quotient map. Then there is a map $\psi_{\lambda\mu}: (Y_{\mu}, B_{\mu}, y_{0\mu}) \rightarrow (X_{\lambda}, A_{\lambda}, x_{0\lambda})$ such that $\phi_{\lambda\mu} = \psi_{\lambda\mu}g_{\mu}$. It is to be noted that $\pi_k(Y_{\mu}, B_{\mu}, y_{0\mu}) = 0$ for $1 \leq k \leq n$, $\pi_1(B_{\mu}, y_{0\mu}) = 0$, and (Y_{μ}, B_{μ}) is a pair of connected CW complexes. Thus, the usual Hurewicz homomorphism

 $\varPhi_{n+1}(Y_\mu,B_\mu,y_{0\mu})\colon \pi_{n+1}(Y_\mu,B_\mu,y_{0\mu}) {\rightarrow} H_{n+1}(Y_\mu,B_\mu)$ is an isomorphism. If we put

$$\begin{array}{l} \theta_{\lambda\mu} = \pi_{n+1}(\psi_{\lambda\mu}) \circ \Phi_{n+1}(Y_{\mu}, B_{\mu}, y_{0\mu})^{-1} \circ H_{n+1}(g_{\mu}j_{\mu}) :\\ H_{n+1}(X_{\mu}, A_{\mu}) \rightarrow \pi_{n+1}(X_{\lambda}, A_{\lambda}, x_{0\lambda}), \end{array}$$

then we have

$$\begin{aligned} \theta_{\lambda\mu} \circ \Phi_{n+1}(X_u, A_\mu, x_{0\mu}) &= \pi_{n+1}(p_{\lambda\mu}), \\ \Phi_{n+1}(X_\lambda, A_\lambda, x_{0\lambda}) \circ \theta_{\lambda\mu} &= H_{n+1}(p_{\lambda\mu}). \end{aligned}$$

Therefore, by Lemma 2, $\{1, \phi_{n+1}(X_{\lambda}, A_{\lambda}, x_{0\lambda}), (\Lambda, \prec)\}$ defines an isomorphism from $\{\pi_{n+1}(X_{\lambda}, A_{\lambda}, x_{0\lambda}), \pi_{n+1}(p_{\lambda\lambda'}), (\Lambda, \prec)\}$ to $\{H_{n+1}(X_{\lambda}, A_{\lambda}), H_{n+1}(p_{\lambda\lambda'}), (\Lambda, \prec)\}$. Thus the second part of Theorem 1 is proved.

The first part is proved similarly (but more easily since $H_k(X_{\mu}, X_{\mu}^n \cup A_{\mu}) = 0$ for $1 \leq k \leq n$).

References

- M. Artin and B. Mazur: Etale Homotopy. Lecture Notes in Mathematics, Vol. 100. Springer, Berlin (1969).
- [2] K. Kuperberg: An isomorphism theorem on the Hurewicz type in Borsuk's theory of shape. Fund. Math., 77, 21-32 (1972).
- [3] S. Mardešić: On the Whitehead theorem in shape theory (to appear).
- [4] K. Morita: On shapes of topological spaces (to appear in Fund. Math.).
- [5] M. Moszyńska: The Whitehead theorem in shape theory. Fund. Math., 80, 221-263 (1973).
- [6] T. Porter: A Čech-Hurewicz isomorphism theorem for movable metric compacta. Math. Scand., 33, 90-96 (1973).