103. A Note on H-Separable Extensions

By Hisao Tominaga

Department of Mathematics, Okayama University

(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1974)

A ring extension A/B with common identity is called an *H*-separable extension if $A \otimes_B A$ is A-A-isomorphic to an A-A-direct summand of a finite direct sum of copies of A, and it is known that every *H*-separable extension is a separable extension (cf. for instance [4, p. 243]). As was shown in [5, Proposition 1.1], if A is a separable *R*algebra and a projective *R*-module then A is a finitely generated *R*module.

In this note, we shall prove an analogue of the above for H-separable extensions:

Proposition. If A/B is an H-separable extension such that A_B is projective, then A_B is finitely generated.

In virtue of the proposition, we see that in [1, Proposition 1.9, Corollary 1.6 and Theorem 1.3], [2, Theorem 4 and Corollary 2], [3, Theorem 1, Corollary 1 and Proposition 4] and [4, Proposition 2.1 and Theorem 2.2] the assumption that the extension considered is a finitely generated module over the ground ring is automatically satisfied. Especially, if A/B is an *H*-separable extension and *B* is Artinian simple then A_B is finitely generated free, which enables us to cut down the proof of [4, Theorem 1.5 (2)].

Now, our proposition is a direct consequence of the next easy lemma, since $A \otimes_B A_A$ is finitely generated for every *H*-separable extension A/B.

Lemma. Let $\rho: B \to A$ be a ring monomorphism (sending 1 to 1), and M_B a projective module. Then, M_B is finitely generated if (and only if) $i_{\rho}(M)_A = M \otimes_B A_A$ is finitely generated.

Proof. Let $\{u_{\lambda}; f_{\lambda}\}_{\lambda \in A}$ $(u_{\lambda} \in M, f_{\lambda} \in \text{Hom }(M_{B}, B_{B}))$ be a projective coordinate system for M_{B} ; i.e., $u = \sum_{\lambda \in A} u_{\lambda} f_{\lambda}(u)$ for every $u \in M$, $f_{\lambda}(u)$ being zero for almost all λ . Then, f_{λ} extends naturally to $f_{\lambda}^{*} \in \text{Hom }(i_{p}(M)_{A}, A_{A})$ and $\{u_{\lambda} \otimes 1; f_{\lambda}^{*}\}_{\lambda \in A}$ is a projective coordinate system for $i_{p}(M)_{A}$. Since $i_{p}(M)_{A}$ is finitely generated by hypothesis, we can find a finite subset K of Λ such that $\{u_{k} \otimes 1\}_{k \in K}$ is a generating system for $i_{p}(M)_{A}$. We consider here the set $I = \{\lambda \in \Lambda | f_{\lambda}(u_{k}) \neq 0$ for some $\kappa \in K\}$, that is obviously a finite subset of Λ . If u is an arbitrary element of M then $u \otimes 1 = \sum_{k \in K} (u_{k} \otimes 1)a_{k}$ with some $a_{k} \in A$. To be easily seen, we have then $\{\lambda \in \Lambda | f_{\lambda}^{*}(u \otimes 1) \neq 0\} \subseteq I$, so that $u \otimes 1 = \sum_{\lambda \in \Lambda} (u_{\lambda} \otimes 1) f_{\lambda}^{*}(u \otimes 1) = \sum_{i \in I} (u_{i} \otimes 1) f_{i}^{*}(u \otimes 1)$, which implies $u = \sum_{i \in I} u_{i} f_{i}(u)$.

References

- K. Sugano: On centralizers in separable extensions. Osaka J. Math., 7, 29-40 (1970).
- [2] ——: Separable extensions and Frobenius extensions. Osaka J. Math., 7, 291-299 (1970).
- [3] ——: On centralizers in separable extensions. II. Osaka J. Math., 8, 465–469 (1971).
- [4] —: On some commutor theorems of rings. Hokkaido Math. J., 1, 242-249 (1972).
- [5] O. E. Villamayor and D. Zelinsky: Galois theory for rings with finitely many idempotents. Nagoya Math. J., 27, 721-731 (1966).