101. On QF-Extensions in an H-Separable Extension

By Taichi Nakamoto
Okayama College of Science
(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1974)

Throughout the present note, A / B will represent a ring extension with common identity $1, V$ the centralizer $V_{A}(B)$ of B in A, and C the center of A. Following K. Hirata [2], A / B is called an H-separable extension if $A \otimes_{B} A$ is A - A-isomorphic to an A - A-direct summand of a finite direct sum of copies of A. To be easily seen, A / B is H-separable if and only if there exist some $v_{i} \in V(i=1, \cdots, m)$ and casimir elements $\sum_{j} x_{i j} \otimes y_{i j}$ of $A \otimes_{B} A$ (which means ($\sum_{j} x_{i j} \otimes y_{i j}$)x=x($\sum_{j} x_{i j} \otimes y_{i j}$) for all $x \in A$) such that $\sum_{i, j} x_{i j} \otimes y_{i j} v_{i}=1 \otimes 1$ (cf. [4; Proposition 1]). Such a system $\left\{v_{i} ; \sum_{j} x_{i j} \otimes y_{i j}\right\}_{i}$ will be called an H-system for A / B. On the other hand, A / B is called a left $Q F$-extension if ${ }_{B} A$ is finitely generated (abbr. f.g.) projective and there exist some $f_{r} \in \operatorname{Hom}\left({ }_{B} A_{B},{ }_{B} B_{B}\right) \quad(r=1$, $\cdots, n)$ and casimir elements $\sum_{s} c_{r s} \otimes d_{r s}$ of $A \otimes_{B} A$ such that $\sum_{r, s} c_{r s} f_{r}\left(d_{r s}\right)$ $=1$. Such a system $\left\{f_{r} ; \sum_{s} c_{r s} \otimes d_{r s}\right\}_{r}$ will be called a left $Q F$-system for A / B. Quite symmetrically, a right $Q F$-extension and a right $Q F$ system can be defined, and A / B is called a $Q F$-extension if A / B is left $Q F$ and right $Q F$. One will easily see that A / B is $Q F$ if and only if there exist a left $Q F$-system and a right $Q F$-system for A / B.

The notion of an H-system will provide a new technique to reconstruct the commutor theory in H-separable extensions developed in [2], [3] and [5]. In this note, we use the technique to prove the following which are motivated by [4; Theorems 4 and 5]:

Theorem 1. Assume that A / B is an H-separable extension. Let B^{\prime} be an intermediate ring of A / B with $V^{\prime}=V_{A}\left(B^{\prime}\right)$ such that $V_{A}\left(V^{\prime}\right)$ $=B^{\prime}$ and ${ }_{V^{\prime}}, V^{\prime}{ }_{V},<\oplus_{V^{\prime}} V_{V^{\prime}}\left(V^{\prime}\right.$ is a $V^{\prime}-V^{\prime}$-direct summand of $\left.V\right)$.
(1) If there exists a left (resp. right) $Q F$-system for A / B^{\prime} then V^{\prime} / C is right (resp. left) $Q F$.
(2) If there exists a right (resp. left) QF-system for V^{\prime} / C then $A_{B^{\prime}}\left(\right.$ resp. $\left.{ }_{B^{\prime}} A\right)$ is f.g. projective and there exists a left (resp. right) $Q F$-system for A / B^{\prime}.
(3) A / B^{\prime} is $Q F$ if and only if so is V^{\prime} / C.

Theorem 2. Assume that A / B is an H-separable extension. Let B^{\prime} be an intermediate ring of A / B with $V^{\prime}=V_{A}\left(B^{\prime}\right)$ such that ${ }_{B^{\prime}} B^{\prime}{ }_{B^{\prime}}$ $<\oplus_{B^{\prime}} A_{B^{\prime}}$.
(1) If there exists a left (resp. right) $Q F$-system for B^{\prime} / B, then ${ }_{V^{\prime}} V\left(\right.$ resp. $V_{V^{\prime}}$) is f.g. projective and there exists a right (resp. left)

QF-system for V / V^{\prime}.
(2) If $B=V_{A}(V)$ and there exists a right (resp. left) QF-system. for V / V^{\prime}, then $B_{B}^{\prime}\left(\right.$ resp.$\left.{ }_{B} B^{\prime}\right)$ is f.g. projective and there exists a left (resp. right) $Q F$-system for B^{\prime} / B.
(3) In case $B=V_{A}(V), B^{\prime} / B$ is $Q F$ if and only if so is V / V^{\prime}.

In order to prove those above, several results obtained previously in [1] and [3] will be required. However, for the sake of completeness, we shall give self-contained proofs to such preliminary results. In what follows, we assume always A / B is an H-separable extension with an H-system $\left\{v_{i} ; \sum_{j} x_{i j} \otimes y_{i j}\right\}_{i}$.

First, we consider the A - A-homomorphism $\eta: A \otimes_{B} A \rightarrow \operatorname{Hom}_{C}(V, A)$ $\left(a_{1} \otimes a_{2} \mapsto\left(v \mapsto a_{1} v a_{2}\right)\right.$. Since $\sum_{i, j} x_{i j} \otimes y_{i j} a_{1} v_{i} a_{2}=\sum_{i, j} a_{1} x_{i j} \otimes y_{i j} v_{i} a_{2}=a_{1} \otimes a_{2}$, we see that η is a monomorphism. Moreover, $\sum_{i, j} x_{i j} \otimes y_{i j} a v_{i}=a \otimes 1$ implies $\left.\sum_{i, j} g\left(x_{i j}\right) \otimes y_{i j} a v_{i}=g(a) \otimes 1\left(g \in \operatorname{Hom} A_{B}, A_{B}\right), a \in A\right)$. Applying η, we obtain $\sum_{i, j} g\left(x_{i j}\right) v y_{i j} a v_{i}=g(a) v(v \in V)$. In particular, if there exists a right B-epimorphism $p: A \rightarrow B$ which induces the identity map on B then for $a \in V_{A}(V)$ we have $p(a)=\sum_{i, j} p\left(x_{i j}\right) y_{i j} a v_{i}=\sum_{i, j} p\left(x_{i j}\right) y_{i j} v_{i} a$ $=a$, which means that if $B_{B}<\oplus A_{B}$ then $V_{A}(V)=B$. Finally, given $h \in \operatorname{Hom}_{C}(V, A)$, there holds $\sum_{i, j} x_{i j} v y_{i j} h\left(v_{i}\right)=h\left(\sum_{i, j} x_{i j} v y_{i j} v_{i}\right)=h(v)$, namely, η is an epimorphism. Summarizing the facts mentioned above, we obtain the following:

Lemma 1. (1) $\sum_{i, j} g\left(x_{i j}\right) v y_{i j} a v_{i}=g(a) v\left(g \in \operatorname{Hom}\left(A_{B}, A_{B}\right), a \in A\right.$, $v \in V)$.
(2) $\sum_{i, j} v_{i} a x_{i j} v g\left(y_{i j}\right)=v g(a)\left(g \in \operatorname{Hom}\left({ }_{B} A,{ }_{B} A\right), a \in A, v \in V\right)$.
(3) V_{C} is f.g. projective and η is an isomorphism whose inverse is given by $h \mapsto \sum_{i, j} x_{i j} \otimes y_{i j} h\left(v_{i}\right)$ (cf. [1; p. 112]).
(4) If $B_{B}<\oplus A_{B}\left(\right.$ resp. $\left.{ }_{B} B<\oplus_{B} A\right)$ then $V_{A}(V)=B$ ([3; Proposition 1.2]).

Next, the map $\xi: V \otimes_{C} V \rightarrow \operatorname{Hom}\left({ }_{B} A_{B}{ }_{B}{ }_{B} A_{B}\right)\left(u_{1} \otimes u_{2} \mapsto\left(a_{\mapsto} \rightarrow u_{1} a u_{2}\right)\right)$ is a V - V-isomorphism, whose inverse is given by $h \mapsto \sum_{i} \sum_{j} h\left(x_{i j}\right) y_{i j} \otimes v_{i}$ $=\sum_{i} v_{i} \otimes \sum_{j} x_{i j} h\left(y_{i j}\right)$ (Lemma 1). Now, let V^{\prime} be a subring of V with $B^{\prime}=V_{A}\left(V^{\prime}\right)$ such that $V_{A}\left(B^{\prime}\right)=V^{\prime}$ and ${ }_{V^{\prime}} V^{\prime}{ }_{V^{\prime}}<\oplus_{V^{\prime}}, V_{V^{\prime}}$. If $h \in \operatorname{Hom}\left({ }_{B^{\prime}} A_{B^{\prime}}\right.$, ${ }_{B^{\prime}} A_{B^{\prime}}$) then $\xi^{-1}(h)=\sum_{i} \sum_{j} h\left(x_{i j}\right) y_{i j} \otimes v_{i}=\sum_{i} v_{i} \otimes \sum_{j} x_{i j} h\left(y_{i j}\right) \in\left(V^{\prime} \otimes_{C} V\right)$ $\cap\left(V \otimes_{C} V^{\prime}\right)=V^{\prime} \otimes_{C} V^{\prime}\left(\subset V \otimes_{C} V\right)$. This proves the following:

Lemma 2. Let V^{\prime} be a subring of V with $B^{\prime}=V_{A}\left(V^{\prime}\right)$ such that $V_{A}\left(B^{\prime}\right)=V^{\prime}$ and $_{V^{\prime}} V^{\prime}{ }_{V^{\prime}}<\oplus_{V^{\prime}} V_{V^{\prime}}$. Then, ξ induces a $V^{\prime}-V^{\prime}$-isomorphism $V^{\prime} \otimes_{C} V^{\prime} \cong \operatorname{Hom}\left({ }_{B^{\prime}} A_{B^{\prime}},{ }_{B^{\prime}} A_{B^{\prime}}\right)$, and so an element h of $\operatorname{Hom}\left({ }_{B^{\prime}} A_{B^{\prime}},{ }_{B^{\prime}} A_{B^{\prime}}\right)$ is in $\operatorname{Hom}\left({ }_{B^{\prime}}, A_{B^{\prime}},{ }_{B^{\prime}} B_{B^{\prime}}\right)$ if and only if $\xi^{-1}(h)$ is a casimir element of $V^{\prime} \otimes_{C} V^{\prime}$.

Proof of Theorem 1. (3) is only a combination of (1) and (2). Let $q: V \rightarrow V^{\prime}$ be an arbitrary V^{\prime} - V^{\prime}-epimorphism which induces the identity map on V^{\prime}.
(1) Let $\left\{f_{r} ; \sum_{s} c_{r s} \otimes d_{r s}\right\}_{r}$ be a left $Q F$-system for A / B^{\prime}, and $g_{r}: V^{\prime}$ $\rightarrow C$ the maps given by $v^{\prime} \mapsto \sum_{s} c_{r s} v^{\prime} d_{r s}$. Then, by Lemma 2 and Lemma 1 (2), $\sum_{i} q\left(v_{i}\right) \otimes \sum_{j} x_{i j} f_{r}\left(y_{i j}\right)=\sum_{i} v_{i} \otimes \sum_{j} x_{i j} f_{r}\left(y_{i j}\right)$ are casimir elements of $V^{\prime} \otimes_{C} V^{\prime}$ and $\left\{g_{r} ; \sum_{i} q\left(v_{i}\right) \otimes \sum_{j} x_{i j} f_{r}\left(y_{i j}\right)\right\}_{r}$ is a right $Q F$-system for V^{\prime} / C. Furthermore, $V^{\prime}{ }_{C}$ is f.g. projective as a C-direct summand of f.g. projective V_{C}.
(2) Let $\left\{g_{r} ; \sum_{s} u_{r s}^{\prime} \otimes v_{r s}^{\prime}\right\}_{r}$ be a right $Q F$-system for V^{\prime} / C, and $f_{i j}: A \rightarrow B^{\prime}$ the right B^{\prime}-homomorphism given by $a \mapsto \sum_{r, s} u_{r s}^{\prime} y_{i j} a g_{r} q\left(v_{i}\right) v_{r s}^{\prime}$. Then, $\left\{f_{i j} ; x_{i j}\right\}_{i, j}$ is an f.g. projective coordinate system (abbr. FGPsystem) for $A_{B^{\prime}}$. In fact, by Lemma 1 we have $\sum_{i, j} x_{i j} f_{i j}(a)$ $=\sum_{i, j, r, s} x_{i j} u_{r s}^{\prime} y_{i j} a g_{r} q\left(v_{i}\right) v_{r s}^{\prime}=a \sum_{r, s} g_{r} q\left(\sum_{i, j} x_{i j} u_{r s}^{\prime} y_{i j} v_{i}\right) v_{r s}^{\prime}=a \sum_{r, s}$ $g_{r}\left(u_{r s}^{\prime}\right) v_{r s}^{\prime}=a$. Finally, if $f_{i}:{ }_{B^{\prime}} A_{B^{\prime} \rightarrow{ }_{B}, B_{B^{\prime}}^{\prime}}$ are given by $a \mapsto \sum_{r, s}$ $u_{r s}^{\prime} a g_{r} q\left(v_{i}\right) v_{r s}^{\prime}$ then $\sum_{i, j} x_{i j} f_{i}\left(y_{i j}\right)=\sum_{i, j} x_{i j} f_{i j}(1)=1$, which means that $\left\{f_{i} ; \sum_{j} x_{i j} \otimes y_{i j}\right\}_{i}$ is a left $Q F$-system for A / B^{\prime}.

Lemma 3 ([3; Proposition 1.3]). Let B^{\prime} be an intermediate ring of A / B with $V^{\prime}=V_{A}\left(B^{\prime}\right)$ such that ${ }_{B^{\prime}} B^{\prime}{ }_{B^{\prime}}<\oplus_{B^{\prime}} A_{B^{\prime}}$. Then, η induces a $B^{\prime}-B^{\prime}$-isomorphism $B^{\prime} \otimes_{B} B^{\prime} \cong \operatorname{Hom}\left({ }_{V^{\prime}}, V_{V^{\prime}},{ }_{V^{\prime}} A_{V^{\prime}}\right)$. Moreover, $V_{A}\left(V^{\prime}\right)=B^{\prime}$, and so an element h of Hom (${ }_{V}, V_{V^{\prime}},{ }_{V^{\prime}} A_{V^{\prime}}$) is in Hom (${ }_{V}, V_{V^{\prime}},{ }_{V^{\prime}}, V_{V^{\prime}}^{\prime}$) if and only if $\eta^{-1}(h)$ is a casimir element of $B^{\prime} \otimes_{B} B^{\prime}$.

Proof. Obviously, $\left(B^{\prime} \otimes_{B} A\right) \cap\left(A \otimes_{B} B^{\prime}\right)=B^{\prime} \otimes_{B} B^{\prime}\left(\subset A \otimes_{B} A\right)$ and η induces a $B^{\prime}-B^{\prime}$-monomorphism $\eta_{B^{\prime}}: B^{\prime} \otimes_{B} B^{\prime} \rightarrow \operatorname{Hom}\left({ }_{V}, V_{V^{\prime}},{ }_{V^{\prime}} A_{V^{\prime}}\right)$. Now, let $p: A \rightarrow B^{\prime}$ be an arbitrary $B^{\prime}-B^{\prime}$-epimorphism which induces the identity map on B^{\prime}. Since $\sum_{j} x_{i j} \otimes y_{i j}$ is a casimir element, $\sum_{j} p\left(x_{i j}\right) v y_{i j}$ and $\sum_{j} x_{i j} v p\left(y_{i j}\right)$ are in $V^{\prime}(v \in V)$. Accordingly, if $h \in \operatorname{Hom}\left({ }_{V}, V_{V^{\prime}},{ }_{V^{\prime}} A_{V^{\prime}}\right)$ then by Lemma 1 (1) we have $\sum_{i, j} p\left(x_{i j}\right) v y_{i j} h\left(v_{i}\right)=h\left(\sum_{i, j} p\left(x_{i j}\right) v y_{i j} v_{i}\right)$ $=h(p(1) v)=h(v)$, and similarly by Lemma 1 (2) $\sum_{i, j} h\left(v_{i}\right) x_{i j} v p\left(y_{i j}\right)$ $=h(v)$. Hence, $\sum_{i, j} p\left(x_{i j}\right) \otimes y_{i j} h\left(v_{i}\right)=\eta^{-1}(h)=\sum_{i, j} h\left(v_{i}\right) x_{i j} \otimes p\left(y_{i j}\right) \in\left(B^{\prime}\right.$ $\left.\otimes_{B} A\right) \cap\left(A \otimes_{B} B^{\prime}\right)=B^{\prime} \otimes_{B} B^{\prime}$, which means that $\eta_{B^{\prime}}$ is an epimorphism. In particular, considering h as the map defined by $v \mapsto x v$ with $x \in V_{A}\left(V^{\prime}\right)$, we have $p(x)=\sum_{i, j} p\left(x_{i j}\right) y_{i j} x v_{i}=x \sum_{i, j} p\left(x_{i j}\right) y_{i j} v_{i}=x$ (Lemma 1 (1)), which proves $V_{A}\left(V^{\prime}\right)=B^{\prime}$.

Lemma 4. Let V^{\prime} be a subring of V with $B^{\prime}=V_{A}\left(V^{\prime}\right)$ such that $V_{A}\left(B^{\prime}\right)=V^{\prime} . \quad$ Let B^{*} be an intermediate ring of $B^{\prime} \mid B$ with $V^{*}=V_{A}\left(B^{*}\right)$.
(1) If ${ }_{B^{\prime}} B_{B}^{\prime}<\oplus_{B^{\prime}} A_{B}$ then the $\operatorname{map}_{B^{*} \xi^{\prime}}: V^{*} \bigotimes_{V}, V \rightarrow \operatorname{Hom}\left({ }_{B^{*}} B_{B}^{\prime}{ }_{B},{ }_{B^{*}} A_{B}\right)$ $\left(v^{*} \otimes v \mapsto\left(b^{\prime} \mapsto v^{*} b^{\prime} v\right)\right)$ is a $V^{*}-V$-isomorphism, whose inverse is given by $h \mapsto \sum_{i} \sum_{j} h p\left(x_{i j}\right) y_{i j} \otimes v_{i}$, where $p: A \rightarrow B^{\prime}$ is an arbitrary B^{\prime}-B-epimorphism which induces the identity map on B^{\prime}. In particular, ${ }_{B} \xi^{\prime}: V \otimes_{V}, V \rightarrow \operatorname{Hom}\left({ }_{B} B_{B}^{\prime},{ }_{B} A_{B}\right)$ is a V - V-isomorphism. Moreover, if $h \in \operatorname{Hom}\left({ }_{B} B^{\prime}{ }_{B},{ }_{B} B_{B}\right)$ and $b^{\prime} \in B^{\prime}$ then $\sum_{i} \sum_{j} h p\left(x_{i j}\right) y_{i j} \otimes v_{i}$ is a casimir element of $V \otimes_{V^{\prime}} V$ and $\sum_{i, j} h p\left(x_{i j}\right) y_{i j} b^{\prime} v_{i}=h\left(b^{\prime}\right)$.
(2) $I f_{B} B^{\prime}{ }_{B^{\prime}}<\oplus_{B} A_{B^{\prime}}$ then the map $\xi^{\prime}{ }_{B^{*}}: V \otimes_{V^{\prime}} V^{*} \rightarrow \operatorname{Hom}\left({ }_{B} B_{B^{*},{ }_{B}} A_{B^{*}}\right)$ $\left(v \otimes v^{*} \mapsto\left(b^{\prime} \mapsto v b^{\prime} v^{*}\right)\right)$ is a $V-V^{*}$-isomorphism, whose inverse is given by $h \mapsto \sum_{i} v_{i} \otimes \sum_{j} x_{i j} h p\left(y_{i j}\right)$, where $p: A \rightarrow B^{\prime}$ is an arbitrary B - B^{\prime}-epimor
phism which induces the identity map on B^{\prime}.
Proof. It is enough to prove (1). If $h \in \operatorname{Hom}\left({ }_{B^{*}} B_{B}^{\prime}{ }_{B},{ }_{B}{ }^{*} A_{B}\right)$ then $\sum_{j} h p\left(x_{i j}\right) y_{i j} \in V^{*}$ and $\sum_{i, j} h p\left(x_{i j}\right) y_{i j} b^{\prime} v_{i}=h p\left(b^{\prime}\right)=h\left(b^{\prime}\right)$ (Lemma 1 (1)), which means that the map defined by $h \mapsto \sum_{i} \sum_{j} h p\left(x_{i j}\right) y_{i j} \otimes v_{i}$ is a right inverse of ${ }_{B^{*} \xi^{\prime}}$. Moreover, noting that $\sum_{j} p\left(x_{i j}\right) v y_{i j} \in V^{\prime}$, we have $\sum_{i} \sum_{j} v^{*} p\left(x_{i j}\right) v y_{i j} \otimes v_{i}=v^{*} \otimes v$ (Lemma 1 (1)), which means that the above map is the inverse of ${ }_{B *} \xi^{\prime}$.

Proof of Theorem 2. (3) is a combination of (1) and (2), and $V_{A}\left(V^{\prime}\right)=B^{\prime}$ by Lemma 3. Let $p: A \rightarrow B^{\prime}$ be an arbitrary B^{\prime} - B^{\prime}-epimorphism which induces the identity map on B^{\prime}.
(1) Let $\left\{f_{r} ; \sum_{s} c_{r s}^{\prime} \otimes d_{r s}^{\prime}\right\}_{r}$ be a left $Q F$-system for B^{\prime} / B. If $g_{i}:{ }_{V}, V$ $\rightarrow{ }_{V}, V^{\prime}$ and $g_{r}^{\prime}:{ }_{V^{\prime}}, V_{V^{\prime}} \rightarrow{ }_{V^{\prime}} V^{\prime}{ }_{V^{\prime}}$ are defined by $v \mapsto \sum_{r, s} c_{r s}^{\prime} v\left(\sum_{j} f_{r} p\left(x_{i j}\right) y_{i j}\right) d_{r s}^{\prime}$ and $v \mapsto \sum_{s} c_{r s}^{\prime} v d_{r s}^{\prime}$ respectively, then, by Lemma 1 (1) and Lemma 4 (1), one will easily see that $\left\{g_{i} ; v_{i}\right\}_{i}$ is an $F G P$-system for ${ }_{V}, V$ and $\left\{g_{r}^{\prime}\right.$; $\left.\sum_{i} \sum_{j} f_{r} p\left(x_{i j}\right) y_{i j} \otimes v_{i}\right\}_{r}$ is a right $Q F$-system for V / V^{\prime}.
(2) Let $\left\{g_{r} ; \sum_{s} u_{r s} \otimes v_{r s}\right\}_{r}$ be a right $Q F$-system for V / V^{\prime}, and $f_{i j}: B^{\prime} \rightarrow B$ the right B-homomorphism given by $b^{\prime} \mapsto \sum_{r, s} u_{r s} p\left(y_{i j} g_{r}\left(v_{i}\right)\right)$ $b^{\prime} v_{r s} . \quad$ By Lemma 3, $\quad \sum_{i, j} x_{i j} \otimes y_{i j} g_{r}\left(v_{i}\right)=\sum_{i, j} p\left(x_{i j}\right) \otimes p\left(y_{i j} g_{r}\left(v_{i}\right)\right)$ is a casimir element of $B^{\prime} \otimes_{B} B^{\prime}$. By Lemma 1, we have then $\sum_{i, j} p\left(x_{i j}\right) f_{i j}$ $\left(b^{\prime}\right)=\sum_{r, s} \sum_{i, j} p\left(x_{i j}\right) u_{r s} p\left(y_{i j} g_{r}\left(v_{i}\right)\right) b^{\prime} v_{r s}=\sum_{r, s} \sum_{i, j} x_{i j} u_{r s} y_{i j} g_{r}\left(v_{i}\right) b^{\prime} v_{r s}$ $=\sum_{r, s} g_{r}\left(\sum_{i, j} x_{i j} u_{r s} y_{i j} v_{i}\right) b^{\prime} v_{r s}=b^{\prime} \sum_{r, s} g_{r}\left(u_{r s}\right) v_{r s}=b^{\prime}$, which means that $\left\{f_{i j} ; p\left(x_{i j}\right)\right\}_{i, j}$ is an $F G P$-system for B_{B}^{\prime}. Finally, if $f_{r}:{ }_{B} B^{\prime}{ }_{B} \rightarrow_{B} B_{B}$ are given by $b^{\prime} \mapsto \sum_{s} u_{r s} b^{\prime} v_{r s}$ then $\sum_{i, j, r} p\left(x_{i j}\right) f_{r}\left(p\left(y_{i j} g_{r}\left(v_{i}\right)\right)\right)=\sum_{i, j} p\left(x_{i j}\right) f_{i j}(1)$ $=1$. This proves that $\left\{f_{r} ; \sum_{i, j} p\left(x_{i j}\right) \otimes p\left(y_{i j} g_{r}\left(v_{i}\right)\right)\right\}_{r}$ is a left $Q F$-system for B^{\prime} / B.

References

[1] K. Hirata: Some types of separable extensions of rings. Nagoya Math. J., 33, 107-115 (1968).
[2] -: Separable extensions and centralizers of rings. Nagoya Math. J., 35, 31-45 (1969).
[3] K. Sugano: Note on semisimple extensions and separable extensions. Osaka J. Math., 4, 265-270 (1967).
[4] -: Separable extensions and Frobenius extensions. Osaka J. Math., 7, 291-299 (1970).
[5] -: On some commutor theorems of rings. Hokkaido Math. J., 1, 242-249 (1972).

