97. A Remark on Quasi-Invariant Measure

By Shozo Koshi and Yasuji TAKAHASHI Hokkaido University

(Comm. by Kôsaku Yosida, M. J. A., Sept. 12, 1974)

In this short note, we shall give a simple proof of Dao-Xing's theorem concerning quasi-invariant measures [1]. Although essential part of this proof is nearly equal to the original one, the assumptions of the original theorem are slightly weakened by this proof. Let $E \subset F$ be linear topological spaces and the linear topological space E be second category with countable basis of nbds (neighbourhoods) of 0, and let the injection map $E \rightarrow F$ be continuous.

Theorem. Let \mathfrak{B} be a σ -algebra of F which is invariant under Eand contains all cylinder sets induced by F^* (dual of F). If μ is a nontrivial E-quasi-invariant measure on (F, \mathfrak{B}) , then there exist a nbd Vof 0 in E and a positive real number C such that

$$\sup_{h \in \mathcal{H}} |f(h)| \leq C \left| |f(x)| \, d\mu(x) \quad \text{for all } f \in F^*.$$

Proof. Assume the contrary. Then, for all positive integer n, we can find an $f_n \in F^*$ and a nbd V_n of 0 in E such that

$$\sup_{\substack{h \in V_n \\ V_1 \supset V_2 \supset \cdots \supset V_n \supset V_{n+1} \supset \cdots}} |f_n(x)| d\mu(x),$$

and $\{V_n\}$ is a basis of nbds of 0 in E.

Clearly we have $\int |f_n(x)| d\mu(x) < \infty$. We shall prove that $0 < \int |f_n(x)| d\mu(x)$. If not, $f_n(x)=0$ almost everywhere on F. For $A_n = \{x \in F; f_n(x)=0\}$, we have $\mu(A_n^c) = 0$.

Since μ is *E*-quasi-invariant, we have $\mu(A_n^c+h)=0$ for all $h \in E$, i.e. $\mu([A_n \cap (A_n+h)]^c)=0$.

Since μ is non-trivial, we have $\mu(A_n \cap (A_n+h)) \ge 0$. Hence, there exists $x \in F$ with $x \in A_n$ and $x-h \in A_n$. Thus, we have

 $f_n(h) = f_n(x) - f_n(x-h) = 0$ for all $h \in E$. This is a contradiction.

Let $a_n = \int |f_n(x)| d\mu(x)$ and consider $l^1(a_n) = \left\{ \xi = (\xi_n); \sum_n |\xi_n| \times \int |f_n(x)| d\mu(x) < \infty \right\}$. For $\xi = (\xi_n) \in l^1(a_n)$, we find $q_{\xi}(h) = \sum_n |\xi_n f_n(h)| < \infty$ for all $h \in E$

by the same argument which is already shown before.

Since $q_{\xi}(h)$ is sub-additive and lower semi-continuous on E and E is second category, there exists a nbd V of 0 in E with

$$\sup_{h\in Y} q_{\xi}(h) < \infty.$$

Since $\{V_n\}$ is a basis of nbds of 0, there exists $V_m \subset V$.

Let $p_n(\xi) = \sup_{h \in \mathcal{V}_n} q_{\xi}(h)$ for $\xi \in l^1(a_n)$. Then, $0 \leq p_n(\xi) \leq \infty$ for all

 $\xi \in l^{\scriptscriptstyle 1}(a_n)$ and for $\xi \in l^{\scriptscriptstyle 1}(a_n)$ there exists m with $p_m(\xi) \! < \! \infty$.

Using Gelfand's theorem (since $l^{1}(a_{n})$ is a Banach space), we see that

$$p_m(\xi) \leq C \|\xi\|_1$$
 for some m and $C > 0$.

Hence, we have

$$\sup_{h \in \mathcal{V}_m} |f_n(h)| \leq C \int |f_n(x)| \, d\mu(x) \quad \text{for all } n.$$

This is a contradiction.

q.e.d.

Remark. As is shown in this proof, we can take off the regularity and local finiteness of μ from the assumptions of Dao-Xing's original theorem.

Reference

 Xia Dao-Xing: Measure and Integration Theory on Infinite-Dimensional Spaces. Academic Press, New York (1972).