139. On Characterizations of Spaces with G_i-diagonals

Ву Такеті МІЗОКАМІ

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1974)

A space X is called to have a G_{δ} -diagonal if the diagonal Δ in $X \times X$ is a G_{δ} -set. A space X is called to have a regular G_{δ} -diagonal if Δ is a regular G_{δ} -set, that is, Δ is written by the following:

$$\varDelta = \cap \{U_n / n \in N\} = \cap \{\overline{U}_n / n \in N\},\$$

where U_n 's are open sets containing Δ in $X \times X$ and N denotes the set of all natural numbers. Ceder in [1] characterized a G_i -diagonal as follows:

Lemma 1. A space X has a G_s -diagonal iff (=if and only if) there is a sequence $\{U_n | n \in N\}$ of open coverings of X such that for each point p in X

 $p = \bigcap \{ S(p, \mathcal{U}_n) / n \in N \}.$

According to Zenor's result in [2], a regular $G_{\mathfrak{s}}$ -diagonal is characterized as follows:

Lemma 2. A space X has a regular G_s -diagonal iff there is a sequence $\{U_n/n \in N\}$ of open coverings of X such that if p,q are distinct points in X, then there are an integer n and open sets U and V containing p and q, respectively, such that no member of U_n intersects both U and V.

The object of the present paper is to characterize spaces with G_{s} or regular G_{s} -diagonal by virtue of above lemmas as images of metric
spaces under open mappings with some properties.

Theorem 1. A space X has a $G_{\mathfrak{d}}$ -diagonal iff there is an open mapping (single-valued) f from a metric space T onto X such that

 $d(f^{-1}(p), f^{-1}(q)) > 0$ for distinct points $p, q \in X$.

Proof. Only if part: Define T as follows:

 $T = \{(\alpha_1, \alpha_2, \cdots) \in N(A) / \cap \{U_{\alpha_n}^n / n \in N\} \neq \phi\},\$

where $\{\mathcal{U}_n = \{U_{\alpha}^n | \alpha \in A\} | n \in N\}$ is a sequence of open coverings of X satisfying the condition in Lemma 1. If we define a mapping $f: T \to X$ as follows;

 $f(\alpha) = \cap \{U_{\alpha_n}^n/n \in N\}$ for $\alpha = (\alpha_1, \alpha_2, \dots) \in T$, then f is clearly a single-valued mapping from T onto X. Since $f(N(\alpha_1, \dots, \alpha_n)) = \cap \{U_{\alpha_i}^i/1 \le i \le n\},$

it follows that f is open. Let p, q be distinct points in X; then by Lemma 1 we admit an integer n in N such that q does not belong to $S(p, U_n)$. In this case it is proved that

No. 8]

Characterizations of Spaces with G_{δ} -diagonals

$$d(f^{-1}(p), f^{-1}(q)) \ge \frac{1}{n},$$

where d is a metric on a Baire's zero-dimensional metric space N(A). Indeed, since

$$S_{1/n}(f^{-1}(p)) = \bigcup \{N(\alpha_1, \cdots, \alpha_n) / \alpha = (\alpha_1, \alpha_2, \cdots) \in f^{-1}(p)\}, q \in f(S_{1/n}(f^{-1}(p))) = S(p, \mathcal{U}_1 \land \cdots \land \mathcal{U}_n).$$

This implies

 $S_{1/n}(f^{-1}(p)) \cap f^{-1}(q) = \phi.$

Hence the distance between $f^{-1}(p)$ and $f^{-1}(q)$ is positive.

If part: Suppose T and f are given. Let $\{U_n\}$ be a sequence of open coverings of T with mesh $U_n < \frac{1}{n}$ such that $\{S(p, U_n)/n \in N\}$ is a real (neighborhood) basis of each point m in T. If we get

nbd (neighborhood) basis of each point p in T. If we set

$$\mathcal{V}_n = f(\mathcal{U}_n) = \{f(U) \mid U \in \mathcal{U}_n\},\$$

then $\{\mathcal{CV}_n\}$ is the desired sequence. Indeed, each \mathcal{CV}_n is an open covering of X because f is open and onto. Assume that p, q are distinct points in X. Then there is an integer n in N such that

$$d(f^{-1}(p), f^{-1}(q)) \ge \frac{1}{n},$$

which implies

$$S_{1/n}(f^{-1}(p)) \cap f^{-1}(q) = \phi,$$

and consequently we have

 $q \in f(S_{1/n}(f^{-1}(p))).$

Since each mech $U_n < \frac{1}{n}$, it follows that

$$q \in S(p, \mathcal{O}_n) = f(S(f^{-1}(p), \mathcal{O}_n)).$$

Hence by Lemma 1 Δ is G_{δ} . Thus the proof is completed.

Theorem 2. A space X has a regular G_{δ} -diagonal iff there is an open mapping f from a metric space T onto X such that for any pair of distinct points p, q in X, there exist nods U and V of p and q, respectively, such that

$$d(f^{-1}(U), f^{-1}(V)) > 0.$$

Proof. Only if part: The construction of T and f is similar to that of Theorem 1, except the fact that a sequence $\{\mathcal{U}_n / n \in N\}$ satisfies the condition in Lemma 2 in place of Lemma 1. Then it is trivial that f is open and onto. Suppose we are given a pair of distinct points p, q in X. Then we get an integer n in N and nbds U and V of p and q, respectively, such that no member of \mathcal{U}_n intersects both U and V, that is, $S(U, \mathcal{U}_n) \cap V = \phi$. Observe

$$f(S_{1/n}(f^{-1}(U))) = S(U, \mathcal{U}_1 \wedge \cdots \wedge \mathcal{U}_n).$$

Thus we have

$$S_{1/n}(f^{-1}(U)) \cap f^{-1}(V) = \phi,$$

$$d(f^{-1}(U), f^{-1}(V)) > 0.$$

If part: Construct a sequence $\{\mathcal{U}_n/n \in N\}$ of open coverings of X in the same fashion as in the proof of Theorem 1. Suppose p and q are distinct points in X. Then by assumption on f we obtain nbd U and V of p and q, respectively, such that

$$d(f^{-1}(U)), f^{-1}(V)) \ge \frac{1}{n}$$
 for some $n \in N$.

This implies

 $S_{1/n}(f^{-1}(U)) \cap f^{-1}(V) = \phi,$

which implies

$$S(U,\mathcal{O}_n)\cap V=\phi,$$

proving that $\{\mathcal{CV}_n\}$ is a sequence in Lemma 2. Hence X has a regular G_s -diagonal. Thus the proof is completed.

Hodel in [3] introduced the notion of G_{δ}^* -diagonal as follows: A space X is called to have a G_{δ}^* -diagonal if there is a sequence $\{\mathcal{U}_n/n \in N\}$ of open coverings of X such that if for any pair of distinct points p, q in X there is an integer n in N such that p does not belong to the closure of $S(q, \mathcal{U}_n)$. Such a sequence is called a G_{δ}^* -sequence for X. It is to be noted that a G_{δ}^* -diagonal implies a G_{δ} -diagonal and that a regular G_{δ} -diagonal implies a G_{δ}^* -diagonal.

Theorem 3. A space X has a G^*_{δ} -diagonal iff there is an open mapping f from a metric space T onto X such that for any pair of distinct points p, q in X thre is a nbd V of p satisfying

 $d(f^{-1}(V), f^{-1}(q)) > 0.$

The proof is similar to that of Theorem 1.

According to Heath in [4] a space X is called to have a G_{δ} -diagonal with 3-link property if there is a sequence $\{\mathcal{U}_n / n \in N\}$ of open coverings of X such that if p and q are distinct points in X, then there is an integer n in N such that no member of \mathcal{U}_n intersects both $S(p, \mathcal{U}_n)$ and $S(q, \mathcal{U}_n)$. Which respect to this G_{δ} -diagonal we have a comparable characterization as follows:

Theorem 4. A space X has a $G_{\mathfrak{s}}$ -diagonal with 3-link property iff there is an open mapping f from a metric space T onto X such that for any pair of distinct points p and q in X and for some n in N

 $d(f^{-1}(f(S_{1/n}(f^{-1}(p)))), f^{-1}(f(S_{1/n}(f^{-1}(q))))) > 0.$

Proof. Only if part: For a given sequence $\{\mathcal{U}_n\}$ of open coverings, we construct T and f in the same fashion as seen in the proof of Theorem 1. Let p, q be distinct points in X. Then we have an integer n in N such that $q \in S^3(p, \mathcal{U}_n)$. Observe that

 $S^{3}(p, \mathcal{U}_{1} \wedge \cdots \wedge \mathcal{U}_{1/n}) = f(S_{n}(f^{-1}(f(S_{1/n}(f^{-1}f(S_{1/n}(f^{-1}(p)))))))))$. Since

610

No. 8]

$$S^{3}(p, \mathcal{U}_{1} \wedge \cdots \wedge \mathcal{U}_{n}) \subset S^{3}(p, \mathcal{U}_{n}),$$

we obtain

$$q \ \overline{\in} \ f(S_{1/n}(f^{-1}(f(S_{1/n}(f^{-1}(f(S_{1/n}(f^{-1}(p))))))))),$$

from which we conclude that

 $d(f^{-1}(f(S_{1/n}(f^{-1}(p)))), f^{-1}(f(S_{1/n}(f^{-1}(q)))))) \ge 0.$

If part: We construct a sequence $\{\mathbb{CV}_n | n \in N\}$ of open coverings of X by the same way as in the proof of Theorem 1. Then we can show by using the property of f that $\{\mathbb{CV}_n\}$ satisfies the 3-link property, and hence the proof is completed.

References

- J. Ceder: Some generalizations of metric spaces. Pacific J. Math., 11, 105-126 (1961).
- [2] P. Zenor: Spaces with regular G₀-diagonals. General Topology and its Relations to Modern Analysis and Algebra, 111, 471-473.
- [3] R. E. Hodel: Moore spaces and w4-spaces. Pacific J. Math., 38, 641-652 (1971).
- [4] R. W. Heath: Metrizability, compactness and paracompactness in Moore spaces. Notices Amer. Math Soc., 10, 105 (1963).