139. On Characterizations of Spaces with G_{o}-diagonals

By Takemi Mizokami
(Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1974)

A space X is called to have a G_{δ}-diagonal if the diagonal Δ in $X \times X$ is a $G_{\dot{j}}$-set. A space X is called to have a regular $G_{\dot{j}}$-diagonal if Δ is a regular $G_{\dot{\delta}}$-set, that is, Δ is written by the following:

$$
\Delta=\cap\left\{U_{n} / n \in N\right\}=\cap\left\{\bar{U}_{n} / n \in N\right\}
$$

where U_{n} 's are open sets containing Δ in $X \times X$ and N denotes the set of all natural numbers. Ceder in [1] characterized a G_{0}-diagonal as follows:

Lemma 1. A space X has a $G_{\dot{j}}$-diagonal iff (=if and only if) there is a sequence $\left\{Ч_{n} / n \in N\right\}$ of open coverings of X such that for each point p in X

$$
p=\cap\left\{S\left(p, \bigcup_{n}\right) / n \in N\right\}
$$

According to Zenor's result in [2], a regular G_{δ}-diagonal is characterized as follows :

Lemma 2. A space X has a regular G_{δ}-diagonal iff there is a sequence $\left\{U_{n} / n \in N\right\}$ of open coverings of X such that if p, q are distinct points in X, then there are an integer n and open sets U and V containing p and q, respectively, such that no member of \mathcal{U}_{n} intersects both U and V.

The object of the present paper is to characterize spaces with $G_{8}-$ or regular G_{i}-diagonal by virtue of above lemmas as images of metric spaces under open mappings with some properties.

Theorem 1. A space X has a $G_{\dot{\delta}}$-diagonal iff there is an open mapping (single-valued) from a metric space T onto X such that $d\left(f^{-1}(p), f^{-1}(q)\right)>0$ for distinct points $p, q \in X$.
Proof. Only if part: Define T as follows:

$$
T=\left\{\left(\alpha_{1}, \alpha_{2}, \cdots\right) \in N(A) / \cap\left\{U_{\alpha_{n}}^{n} / n \in N\right\} \neq \phi\right\}
$$

where $\left\{U_{n}=\left\{U_{\alpha}^{n} / \alpha \in A\right\} / n \in N\right\}$ is a sequence of open coverings of X satisfying the condition in Lemma 1. If we define a mapping $f: T \rightarrow X$ as follows;

$$
f(\alpha)=\cap\left\{U_{\alpha_{n}}^{n} / n \in N\right\} \quad \text { for } \alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right) \in T
$$

then f is clearly a single-valued mapping from T onto X. Since

$$
f\left(N\left(\alpha_{1}, \cdots, \alpha_{n}\right)\right)=\cap\left\{U_{\alpha_{i}}^{i} / 1 \leqq i \leqq n\right\}
$$

it follows that f is open. Let p, q be distinct points in X; then by Lemma 1 we admit an integer n in N such that q does not belong to $S\left(p, \bigcup_{n}\right)$. In this case it is proved that

$$
d\left(f^{-1}(p), f^{-1}(q)\right) \geqq \frac{1}{n}
$$

where d is a metric on a Baire's zero-dimensional metric space $N(A)$. Indeed, since

$$
\begin{gathered}
S_{1 / n}\left(f^{-1}(p)\right)=\cup\left\{N\left(\alpha_{1}, \cdots, \alpha_{n}\right) / \alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right) \in f^{-1}(p)\right\}, \\
q \bar{\epsilon} f\left(S_{1 / n}\left(f^{-1}(p)\right)\right)=S\left(p, \bigcup_{1} \wedge \cdots \wedge U_{n}\right) .
\end{gathered}
$$

This implies

$$
S_{1 / n}\left(f^{-1}(p)\right) \cap f^{-1}(q)=\phi .
$$

Hence the distance between $f^{-1}(p)$ and $f^{-1}(q)$ is positive.
If part: Suppose T and f are given. Let $\left\{U_{n}\right\}$ be a sequence of open coverings of T with mesh $U_{n}<\frac{1}{n}$ such that $\left\{S\left(p, U_{n}\right) / n \in N\right\}$ is a nbd (neighborhood) basis of each point p in T. If we set

$$
\mathcal{C} V_{n}=f\left(\bigcup_{n}\right)=\left\{f(U) / U \in \mathcal{U}_{n}\right\},
$$

then $\left\{C V_{n}\right\}$ is the desired sequence. Indeed, each \mathcal{V}_{n} is an open covering of X because f is open and onto. Assume that p, q are distinct points in X. Then there is an integer n in N such that

$$
d\left(f^{-1}(p), f^{-1}(q)\right) \geqq \frac{1}{n}
$$

which implies

$$
S_{1 / n}\left(f^{-1}(p)\right) \cap f^{-1}(q)=\phi,
$$

and consequently we have

$$
q \bar{\epsilon} f\left(S_{1 / n}\left(f^{-1}(p)\right)\right) .
$$

Since each mech $U_{n}<\frac{1}{n}$, it follows that

$$
q \bar{\epsilon} S\left(p, \vartheta_{n}\right)=f\left(S\left(f^{-1}(p), \vartheta_{n}\right)\right) .
$$

Hence by Lemma 1Δ is $G_{\dot{\delta}}$. Thus the proof is completed.
Theorem 2. A space X has a regular $G_{\dot{j}}$-diagonal iff there is an open mapping f from a metric space T onto X such that for any pair of distinct points p, q in X, there exist nbds U and V of p and q, respectively, such that

$$
d\left(f^{-1}(U), f^{-1}(V)\right)>0 .
$$

Proof. Only if part: The construction of T and f is similar to that of Theorem 1, except the fact that a sequence $\left\{U_{n} / n \in N\right\}$ satisfies the condition in Lemma 2 in place of Lemma 1. Then it is trivial that f is open and onto. Suppose we are given a pair of distinct points p, q in X. Then we get an integer n in N and nbds U and V of p and q, respectively, such that no member of U_{n} intersects both U and V, that is, $S\left(U, U_{n}\right) \cap V=\phi$. Observe

$$
f\left(S_{1 / n}\left(f^{-1}(U)\right)\right)=S\left(U, U_{1} \wedge \cdots \wedge \bigcup_{n}\right) .
$$

Thus we have

$$
S_{1 / n}\left(f^{-1}(U)\right) \cap f^{-1}(V)=\phi,
$$

implying

$$
d\left(f^{-1}(U), f^{-1}(V)\right)>0
$$

If part: Construct a sequence $\left\{U_{n} / n \in N\right\}$ of open coverings of X in the same fashion as in the proof of Theorem 1. Suppose p and q are distinct points in X. Then by assumption on f we obtain nbd U and V of p and q, respectively, such that

$$
\left.d\left(f^{-1}(U)\right), f^{-1}(V)\right) \geqq \frac{1}{n} \quad \text { for some } n \in N
$$

This implies

$$
S_{1 / n}\left(f^{-1}(U)\right) \cap f^{-1}(V)=\phi
$$

which implies

$$
S\left(U, Q_{n}\right) \cap V=\phi,
$$

proving that $\left\{\mathcal{V}_{n}\right\}$ is a sequence in Lemma 2. Hence X has a regular G_{i}-diagonal. Thus the proof is completed.

Hodel in [3] introduced the notion of $G_{\dot{\sigma}}^{*}$-diagonal as follows: A space X is called to have a G_{δ}^{*}-diagonal if there is a sequence $\left\{U_{n} / n \in N\right\}$ of open coverings of X such that if for any pair of distinct points p, q in X there is an integer n in N such that p does not belong to the closure of $S\left(q, \cup_{n}\right)$. Such a sequence is called a G_{δ}^{*}-sequence for X. It is to be noted that a G_{δ}^{*}-diagonal implies a $G_{\dot{j}}$-diagonal and that a regular G_{δ}-diagonal implies a G_{δ}^{*}-diagonal.

Theorem 3. A space X has a G_{δ}^{*}-diagonal iff there is an open mapping f from a metric space T onto X such that for any pair of distinct points p, q in X thre is a nbd V of p satisfying

$$
d\left(f^{-1}(V), f^{-1}(q)\right)>0
$$

The proof is similar to that of Theorem 1.
According to Heath in [4] a space X is called to have a G_{i}-diagonal with 3 -link property if there is a sequence $\left\{U_{n} / n \in N\right\}$ of open coverings of X such that if p and q are distinct points in X, then there is an integer n in N such that no member of \mathcal{U}_{n} intersects both $S\left(p, \mathcal{U}_{n}\right)$ and $S\left(q, \cup_{n}\right)$. Which respect to this G_{δ}-diagonal we have a comparable characterization as follows:

Theorem 4. A space X has a G_{i}-diagonal with 3-link property iff there is an open mapping from a metric space T onto X such that for any pair of distinct points p and q in X and for some n in N

$$
d\left(f^{-1}\left(f\left(S_{1 / n}\left(f^{-1}(p)\right)\right)\right), f^{-1}\left(f\left(S_{1 / n}\left(f^{-1}(q)\right)\right)\right)\right)>0
$$

Proof. Only if part: For a given sequence $\left\{U_{n}\right\}$ of open coverings, we construct T and f in the same fashion as seen in the proof of Theorem 1. Let p, q be distinct points in X. Then we have an integer n in N such that $q \bar{\in} S^{3}\left(p, U_{n}\right)$. Observe that

$$
\left.S^{3}\left(p, \bigcup_{1} \wedge \cdots \wedge \bigcup_{1 / n}\right)=f\left(S_{n}\left(f^{-1}\left(f\left(S_{1 / n}\left(f^{-1} f\left(S_{1 / n}\left(f^{-1}(p)\right)\right)\right)\right)\right)\right)\right)\right)
$$

Since

$$
S^{3}\left(p, U_{1} \wedge \cdots \wedge U_{n}\right) \subset S^{3}\left(p, U_{n}\right),
$$

we obtain

$$
q \bar{\epsilon} f\left(S_{1 / n}\left(f^{-1}\left(f\left(S_{1 / n}\left(f^{-1}\left(f\left(S_{1 / n}\left(f^{-1}(p)\right)\right)\right)\right)\right)\right)\right)\right)
$$

from which we conclude that

$$
d\left(f^{-1}\left(f\left(S_{1 / n}\left(f^{-1}(p)\right)\right)\right), f^{-1}\left(f\left(S_{1 / n}\left(f^{-1}(q)\right)\right)\right)\right)>0
$$

If part: We construct a sequence $\left\{\mathcal{V}_{n} / n \in N\right\}$ of open coverings of X by the same way as in the proof of Theorem 1. Then we can show by using the property of f that $\left\{\mathcal{V}_{n}\right\}$ satisfies the 3-link property, and hence the proof is completed.

References

[1] J. Ceder: Some generalizations of metric spaces. Pacific J. Math., 11, 105-126 (1961).
[2] P. Zenor: Spaces with regular G_{δ}-diagonals. General Topology and its Relations to Modern Analysis and Algebra, 111, 471-473.
[3] R. E. Hodel: Moore spaces and $w A$-spaces. Pacific J. Math., 38, 641-652 (1971).
[4] R. W. Heath: Metrizability, compactness and paracompactness in Moore spaces. Notices Amer. Math Soc., 10, 105 (1963).

