137. On Isolated Components of Elements in a Compactly Generated l-Semigroup

By Derbiau F. Hsu*)
(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

Recently, Murata and Hsu [2], [3] have presented analogous results of [4] for elements of an l-semigroup with a compact generator system. In [1] by defining an isolated component, authors have done a continued work of [4] to investigate the ideals which can be represented as the intersection of a finite number of f-primary ideals. The purpose of this note is to generalize results in [1] to elements in a compactly generated l-semigroup with a compact generator system.

Let L be a $c l$-semigroup with the following conditions as same as in [2], [3]:
(α) If M is a φ-system with kernel M^{*}, and if for any element a of L, M meets $\Sigma(\alpha)$, then M^{*} meets $\Sigma(\alpha)$.
(β) For any φ-primary element q of $L, q: q=e$. Moreover, if for any φ-system $M, \Sigma(r(q))$ meets M, then $\Sigma(q)$ meets M.

Throughout this note, we shall denote $r(a)$ as the φ-radical of an element a of L. Other terms are as same as in [2], [3].

1. Isolated components. Definition 1.1. Let a be an element of L and M be a φ-system. The isolated component $a(M)$ of a determined by M will be defined as the supremum of all $\{a: m\}, m$ runs over M, when M is not empty. $a(M)$ is defined to be a, when M is empty.

As in [3], we have assumed that there is such element x for any $a \in L$ and any $u \in \Sigma$ with $\varphi(u) \varphi(x) \leqslant a, x \in \Sigma$. Then there exists such element $\alpha: m$ in L and it can be seen from (3.2) in [3] that $\alpha \leqslant \alpha(M)$.

Lemma 1.2. Let M^{*} be any kernel of a φ-system M. If $x \in \Sigma(a(M))$, there exists an element m^{*} of M^{*} such that $\varphi\left(m^{*}\right) \varphi(x)$ is less than a.

Proof. Since $x \in \Sigma(a(M))$, we have $x \leq a(M)=\sup \left\{\underset{m \in M}{\bigvee} N_{m}\right\}$, when M is not empty (if M is empty, it is trivial), where N_{m} is the set of the compact elements u 's such that $\varphi(m) \varphi(u) \leqslant a$, and \vee denotes the settheoretic union. Then we can find a finite number of elements x_{i} of $\bigvee_{m \in M} N_{m}$ such that $x \leq \bigcup_{i=1}^{n} x_{i}$. Suppose that $x_{i} \in N_{m_{i}}$, then $\varphi\left(m_{i}\right) \varphi\left(x_{i}\right) \leq a$, $x \leqq \bigcup_{i=1}^{n} x_{i} \leqq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right), \varphi(x) \leqq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right)$. Moreover, we can find m_{i}^{*} of M^{*}

[^0]such that $m_{i}^{*} \leqslant \varphi\left(m_{i}\right)$ for $i=1,2, \cdots, n$. Take an element m^{*} of M^{*} such that $m^{*} \leqslant \prod_{i=1}^{n} m_{i}^{*}$. Then we have $\varphi\left(m^{*}\right) \leqslant \varphi\left(m_{i}\right)$ and $\varphi\left(m^{*}\right) \varphi(x)$ $\leq \bigcup_{i=1}^{n} \varphi\left(m^{*}\right) \varphi\left(x_{i}\right) \leq \bigcup_{i=1}^{n} \varphi\left(m_{i}\right) \varphi\left(x_{i}\right) \leqslant a$ as desired.

Proposition 1.3. An element q of L is φ-primary if and only if, for any φ-system M, either $q(M)=q$ or $q(M)=e$ holds.

Proof. Suppose that q is φ-primary and there exists a φ-system M such that $q(M) \neq q$. Then we have $q \nsupseteq q(M)$. This implies that there exists x in $\Sigma(q(M))$ but not in $\Sigma(q)$. By (1.2), there exists an element m^{*} of M^{*} such that $\varphi\left(m^{*}\right) \varphi(x)$ is less than q. Because q is φ-primary and $x \not \leq q$, we have $m^{*} \leq r(q)$. This means M meets $\Sigma(r(q))$. By condition (β), M meets $\Sigma(q)$. Then there exists m in M and in $\Sigma(q)$. It follows that $\bigcap_{q^{\prime} \in \Sigma(q)}\left(q: q^{\prime}\right)=e$ (since $q: q=e$), then $q: q^{\prime}=e$ for all q^{\prime} in $\Sigma(q)$. We have then $q: m=e$ and then $q(M)=e$.

Conversely, suppose for any φ-system M, either $q(M)=q$ or $q(M)$ $=e$ and q is not $\varphi \wedge$ primary. Then there exists $a \not \leq q, b \not \leq r(q)$ such that $\varphi(a) \varphi(b) \leqslant q, a, b \in \Sigma$. Since $b \not \leq r(q)=\inf _{i} p_{i}$, where p_{i} is φ-prime element and greater than q, there exists a φ-prime element p such that $p \geq q$ and $b \not \leq p$. Then $M=\Sigma^{\prime}(p)$ is a φ-system. By the fact $q: b$ $=\sup \{x \mid \varphi(x) \varphi(b) \leqslant q\}$ and $\varphi(a) \varphi(b) \leqslant q$, we have $a \leqslant q: b$. Moreover, we know that b is in M. Then $a \leq q: b \leq \bigcup_{m \in M}\{q: m\}=q(M)$. Therefore $q \nsupseteq q(M)$. Then we have $q(M)=e$. Since b is in $\Sigma(q(M)$), by (1.2), there exists an element m^{*} in M^{*} such that $\varphi\left(m^{*}\right) \varphi(b)$ is less than q. Now $\varphi\left(m^{*}\right) \varphi(b) \leqslant q \leqslant p$. We have $m^{*} \leqslant p$ or $b \leqslant p$. But both are impossible. Then q is φ-primary as desired.

If an element a has an φ-primary decomposition, then the isolated component of a can be expressed in terms of its φ-primary components.

Theorem 1.4. Let a be an element of L and M be an φ-system. Suppose that $a=q_{1} \cap q_{2} \cap \cdots \cap q_{n}$, where q_{i} is φ-primary. If $\Sigma\left(r\left(q_{i}\right)\right)$ meets M for $n^{*}+1 \leqslant i \leqslant n$ but not for $1 \leqslant i \leqslant n^{*}$, then we have $a(M)$ $=q_{1} \cap q_{2} \cap \cdots \cap q_{n^{*}} \quad$ If $\Sigma\left(r\left(q_{i}\right)\right)$ meets M for $1 \leqslant i \leqslant n$, then $a(M)=e$.

Proof. If M is empty, the theorem is trivial. So, we assume that M is not empty. Let $x \leqslant a(M)=\sup _{m \in M}\{a: m\}$. As the proof of (1.3), we get $m^{*} \in M^{*} \subseteq M$ such that $\varphi\left(m^{*}\right) \varphi(x) \leqslant a=q_{1} \cap q_{2} \cap \cdots \cap q_{n}$, where M^{*} is the kernel of M. Then we have $\varphi\left(m^{*}\right) \varphi(x) \leqslant q_{i}, i=1,2, \cdots, n$. For $1 \leq i \leqslant n^{*}, M$ does not meet $\Sigma\left(r\left(q_{i}\right)\right)$. It means that $m^{*} \not \leq r\left(q_{i}\right)$ for all m^{*} in M^{*}. Since q_{i} is φ-primary, we have $x \leqslant q_{i}$, for $i=1,2, \cdots, n^{*}$ and hence $a(M) \leqslant q_{1} \cap q_{2} \cap \cdots \cap q_{n^{*}}$.

For $n^{*}+1 \leqslant j \leqslant n, \Sigma\left(r\left(q_{j}\right)\right)$ meets M and hence by (α) and $(\beta), \Sigma\left(r\left(q_{j}\right)\right)$ meets M^{*}. Since M^{*} is a μ-system, for $m_{n^{*+1}} \in \Sigma\left(q_{n^{*+1}}\right) \cap M^{*}$ and $m_{n^{*+2}}$
$\in \Sigma\left(q_{n^{*}+2}\right) \cap M^{*}$, there exists $m_{n^{*+2}}^{\prime} \in M^{*}$ such that $m_{n^{*+2}}^{\prime} \leq m_{n^{*+1}} m_{n^{*+2}}$ $\in \Sigma\left(q_{n^{*}+1}\right) \cap \Sigma\left(q_{n^{*}+2}\right) \cap M^{*}$. Similarly, there exists $m_{n^{*+3}}^{\prime} \in M^{*}$ and $m_{n^{*+3}}^{\prime}$ $\leq m_{n^{*}+2}^{\prime} m_{n^{*}+3} \in \Sigma\left(q_{n^{*}+1}\right) \cap \Sigma\left(q_{n^{*}+2}\right) \cap \Sigma\left(q_{n^{*}+3}\right) \cap M^{*}$ for $m_{n^{*}+3} \in \Sigma\left(q_{n^{*}+3}\right) \cap M^{*}$. Continuing in this way, we obtain after a finite number of steps an element m_{n}^{\prime} such that $m_{n}^{\prime} \in \Sigma\left(q_{n^{*}+1}\right) \cap \cdots \cap \Sigma\left(q_{n}\right) \cap M^{*}$. Hence by condition (β), we have $q_{j}: m_{n}^{\prime}=e$. On the other hand, we have $q_{1} \cap \cdots \cap q_{n^{*}}$ $\leqslant\left(q_{1} \cap \cdots \cap q_{n^{*}}\right): m_{n}^{\prime}=\left(q_{1} \cap q_{2} \cap \cdots \cap q_{n}\right): m_{n}^{\prime}=a: m_{n}^{\prime} \leqslant a(M)$. Then we can conclude that $\alpha(M)=q_{1} \cap q_{2} \cap \cdots \cap q_{n^{*}}$.

If for $1 \leqslant i \leqslant n, \Sigma\left(r\left(q_{i}\right)\right)$ meets M, then the above proof shows that there exists m_{n}^{\prime} such that $m_{n}^{\prime} \in \Sigma\left(q_{1}\right) \cap \cdots \cap \Sigma\left(q_{n}\right) \cap M^{*}$ and then $\left(q_{1} \cap \cdots \cap q_{n}\right): m_{n}^{\prime}=e$, hence we have $a(M)=e$. This completes the proof.

Combining this theorem with (1.3), we can conclude that if q is φ-primary element in L, then $q(M)$ is e or q according as $\Sigma(r(q))$ meets or does not meet M, where M is a φ-system.

From (1.4), we see immediately the following corollary :
Corollary 1.5. A decomposable element of L has at most a finite number of isolated components.
2. Isolated set. Lemma 2.1. Suppose that an element a of L has an φ-primary decomposition: $a=q_{1} \cap q_{2} \cap \cdots \cap q_{n}$. Then any φ-prime element p which is greater than a must be greater than at least one of the q_{i}.

Proof. If $p=e$, the lemma is trivial. Therefore we may suppose there exists a φ-prime element $p \neq e$ such that $a \leqslant p$ and $q_{i} \not \leq p$ for $1 \leqslant i$ $\leqslant n$. We can see that $\Sigma^{\prime}(p)$ is a φ-system. Then we have $\Sigma^{\prime}(p)$ meets $\Sigma\left(q_{i}\right)$ for all $i=1,2, \cdots, n$. It follows that $\Sigma^{\prime}(p)$ meets $\Sigma\left(r\left(q_{i}\right)\right)$ for all $i=1,2, \cdots, n$. If we let $\Sigma^{\prime}(p)=M$, we have by (1.4), that $a(M)=e$. Let b be any element of L and let c be in $\Sigma(b)$. Then $c \leqslant e=\alpha(M)$ $=\sup _{m \in M}\{a: m\}=\sup _{m \in M}\left\{\sup \left[N_{m}\right]\right\} \leqslant \sup \left[\bigvee_{m \in M} N_{m}\right]$, where N_{m} is the set of the compact elements u 's such that $\varphi(m) \varphi(u) \leqslant a$. As is seen from the proof of (1.3), we can find a finite number of elements x_{i} of $\bigvee_{m \in M} N_{m}$ (suppose x_{i} in $N_{m_{i}}$) such that $c \leq \bigcup_{i=1}^{n} x_{i}$ and there exists m^{*} in M^{*} (kernel of M) such that $\varphi\left(m^{*}\right) \leqslant \varphi\left(m_{i}\right)$. Then we have $\varphi(c) \leqslant \bigcup_{i=1}^{n} \varphi\left(x_{i}\right)$, and then $\varphi\left(m^{*}\right) \varphi(c) \leqslant \bigcup_{i=1}^{n} \varphi\left(m^{*}\right) \varphi\left(x_{i}\right) \leq \bigcup_{i=1}^{n} \varphi\left(m_{i}\right) \varphi\left(x_{i}\right) \leqslant a \leqslant p$. Since p is φ-prime and $m^{*} \not \leq p$, we have $c \leq p$ for all c in $\Sigma(b)$. This means that $\Sigma(b)$ is contained in $\Sigma(p)$, and then $b \leqslant p$, for all b in L, a contradiction.

As is easily seen from [3, Theorem 4.4] that if an element a of L has φ-primary decomposition, and let $a=q_{1} \cap q_{2} \cap \cdots \cap q_{n}$ be its normal decomposition, then the number of φ-primary components and the φ radicals of φ-primary components depend only on a and not on the
particular normal decomposition considered. Then we have the following definition:

Definition 2.2. A subset $\left\{r\left(q_{1}\right), r\left(q_{2}\right), \cdots, r\left(q_{m}\right)\right\}$ of the radicals is called an isolated set of a, if for $m+1 \leqslant j \leqslant n, r\left(q_{j}\right) \npreceq r\left(q_{i}\right)$ for $1 \leqslant i \leqslant m$.

Proposition 2.3. Suppose that an element a of L has an φ-primary decomposition. Let $a=q_{1} \cap q_{2} \cap \cdots \cap q_{n}$ be its normal decomposition, and let $r\left(q_{i}\right)=\bigcap_{k} p_{i k}$ be the expression of $r\left(q_{i}\right)$ as the meet of all the quasi-minimal φ-prime elements belonging to q_{i}. Then the following three conditions are equivalent:
(1) The set $\left\{r\left(q_{1}\right), r\left(q_{2}\right), \cdots, r\left(q_{m}\right)\right\}$ is an isolated set of a.
(2) For each $q_{i}, 1 \leqslant i \leqslant m$, there exists at least one quasi-minimal φ-prime $p_{i k_{i}}=p_{i}^{*}$ such that $p_{i}^{*} \nsupseteq p_{j k}$ for all $j, m+1 \leqslant j \leqslant n$ for all k.
(3) For each $r\left(q_{i}\right), 1 \leqslant i \leqslant m, r\left(q_{i}\right) \nsupseteq q_{m+1} \cap q_{m+2} \cap \cdots \cap q_{n}$.

Proof. We shall prove this proposition by the way that (1) implies (2), (2) implies (3) and (3) implies (1).

Suppose that $\left\{r\left(q_{1}\right), r\left(q_{2}\right), \cdots, r\left(q_{m}\right)\right\}$ is an isolated set of a. We have $r\left(q_{j}\right) \nless r\left(q_{i}\right)$ for $1 \leqslant i \leqslant m, m+1 \leqslant j \leqslant n$ (by (2.2)). Assume that for every quasi-minimal φ-prime $p_{i k}$ of $r\left(q_{i}\right), p_{j k} \leqslant p_{i k}$ for all $j, m+1 \leqslant j \leqslant n$ and for all k. This implies that $r\left(q_{j}\right)=\bigcap_{k} p_{j k} \leqslant \bigcap_{k} p_{i k}=r\left(q_{i}\right)$ for all $j, m+1 \leqslant j \leqslant n$. It leads to a contradiction. Then there exists $p_{i k_{i}}=p_{i}^{*}$ such that $p_{i}^{*} \nsupseteq p_{j k}$ for all $j, m+1 \leqslant j \leqslant n$ and for all k.

Secondly, we suppose that (2) is true. Since any φ-prime element greater than an element of L must be greater than a quasi-minimal φ-prime element belonging to it [2], we have by $p_{j k} \not \leq p_{i}^{*}$ that $q_{j} \not \leq p_{i}^{*}$ for $1 \leqslant i \leqslant m$ and for all $j, m+1 \leqslant j \leqslant n$. Therefore we conclude that $\bigcap_{j} q_{j}$ $\not \subset p_{i}^{*}$ (because if not so, then we have $\bigcap_{j} q_{j} \leq p_{i}^{*}$, by (2.1), we have q_{j} $\leqslant p_{i}^{*}$ for some $j, m+1 \leqslant j \leqslant n$, a contradiction). Then $\bigcap_{j} q_{j} \not \leq r\left(q_{i}\right)$ for $1 \leqslant i \leqslant m$ and $j=m+1, \cdots, n$.

Finally, we suppose $r\left(q_{i}\right) \nsupseteq q_{m+1} \cap q_{m+2} \cap \cdots \cap q_{n}$, for $1 \leqslant i \leqslant m$. It follows that $r\left(q_{i}\right) \nsupseteq q_{j}$, for all $j, m+1 \leqslant j \leqslant n$ and for $1 \leqslant i \leqslant m$. This implies that for all $i, 1 \leqslant i \leqslant m, r\left(q_{i}\right) \nsupseteq r\left(q_{j}\right), m+1 \leqslant j \leqslant n$. Then $\left\{r\left(q_{1}\right)\right.$, $\left.r\left(q_{2}\right), \cdots, r\left(q_{m}\right)\right\}$ is an isolated set of a.

Now, we come to the second uniqueness theorem for normal decomposition [3]. The proof of this theorem is just similar to [1, Theorem 8]. So, we will omit it here.

Theorem 2.4. Suppose that an element a has φ-primary decomposition, and let $a=q_{1} \cap q_{2} \cap \cdots \cap q_{n}$ be its normal decomposition. If $\left\{r\left(q_{1}\right), r\left(q_{2}\right), \cdots, r\left(q_{m}\right)\right\}$ is an isolated set of a, then $q_{1} \cap q_{2} \cap \cdots \cap q_{m}$ depends only on $r\left(q_{1}\right), r\left(q_{2}\right), \cdots, r\left(q_{m}\right)$ and not on the particular normal decomposition of a.

Remark. By the second condition of (2.3), we have $p_{j k} \nsubseteq p_{i}^{*}$ for all $j, m+1 \leqslant j \leqslant n$ and for all k, where $p_{i}^{*}=p_{i k_{i}}$ and $1 \leqslant i \leqslant m$. Since any φ-prime element greater than an element of L must be greater than a quasi-minimal φ-prime element belonging to it, we have $q_{j} \not \leq p_{i}^{*}$ for $1 \leqslant i \leqslant m$ and for all $j=m+1, \cdots, n$. (1.4) shows that for $1 \leqslant i \leqslant m$, each $a_{M_{i}}$ can be expressed as the meet of $q_{1}, q_{2}, \cdots, q_{m}$ and one of which is certainly q_{i} (where $M_{i}=\Sigma^{\prime}\left(p_{i}^{*}\right)$). Then we have

$$
q_{1} \cap q_{2} \cap \cdots \cap q_{m}=q_{M_{1}} \cap q_{M_{2}} \cap \cdots \cap q_{M_{m}}
$$

Since each minimal element of the set $\left\{r\left(q_{1}\right), r\left(q_{2}\right), \cdots, r\left(q_{n}\right)\right\}$ forms on its own an isolated set of a, we have by (2.4) the following result which is analogous to that in [1].

Corollary 2.5. Let $r\left(q_{0}\right)$ be a minimal element in the set $\left\{r\left(q_{1}\right), r\left(q_{2}\right)\right.$, $\left.\cdots, r\left(q_{n}\right)\right\}$ of the radicals of the φ-primary components of a. Then the φ-primary component corresponding to $r\left(q_{0}\right)$ is the same for all normal decompositions of a.

References

[1] Y. Kurata and S. Kurata: A generalization of prime ideals in rings. Proc. Japan Acad., 45, 75-78 (1969).
[2] K. Murata and Derbiau F. Hsu: Generalized prime elements in a compactly generated l-semigroup. I. Proc. Japan Acad., 49, 134-139 (1973).
[3] -: Generalized prime elements in a compactly generated l-semigroup. II. Proc. Japan Acad., 49, 310-313 (1973).
[4] K. Murata, Y. Kurata, and H. Marubayashi: A generalization of prime ideals in rings. Osaka J. Math., 6, 291-301 (1969).

[^0]: *) Department of Mathematics, National Central University, Chung-Li, Taiwan.

