133. On the Fundamental Units of Real Quadratic Fields

By Masakazu Kutsuna
College of General Education, Chukyo University
(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

1. Let $\boldsymbol{Q}(\sqrt{\bar{D}}),(D>0$ square-free rational integer), be a real quadratic field and put $D=n^{2}+r(-n<r \leqq n)$. Then, if $4 n \equiv 0(\bmod r)$ holds, the fundamental unit $\varepsilon_{D}>1$ of $Q(\sqrt{D})$ is well known ([1]) and such a real quadratic field $Q(\sqrt{D})$ is called $R-D$ type. On the other hand, for any given real quadratic field $\boldsymbol{Q}(\sqrt{D})$, its fundamental unit can be calculated by the continued fraction expansion of \sqrt{D}.

In this note, we shall first describe the fundamental units of all real quadratic fields in a similar fashion to $R-D$ type, and give next its relation between continued fraction expansion. Finally, we shall give a generalization of a result of Morikawa [3] concerned with these facts.
2. The following theorem is a generalization of a result of Degert [1]:

Theorem 1. For any given positive square-free integer D, let v_{0} be the least positive integer such that $v_{0}^{2} D=n_{0}^{2}+r_{0}$ holds with integers n_{0}, r_{0} satisfying $-n_{0}<r_{0} \leqq n_{0}$ and $4 n_{0} \equiv 0\left(\bmod r_{0}\right)$. Then the fundamental unit $\varepsilon_{D}>1$ of $\boldsymbol{Q}(\sqrt{\bar{D}})$ is of the following form:

$$
\begin{aligned}
& \varepsilon_{D}=n_{0}+v_{0} \sqrt{D}, \quad N \varepsilon_{D}=-\operatorname{sgn} r_{0} \text { for }\left|r_{0}\right|=1 \text {, (except for } D=5, v_{0}=1 \text {), } \\
& \varepsilon_{D}=\left(n_{0}+v_{0} \sqrt{D}\right) / 2, \quad N \varepsilon_{D}=-\operatorname{sgn} r_{0} \text { for }\left|r_{0}\right|=4, \\
& \varepsilon_{D}=\left[\left(2 n_{0}^{2}+r_{0}\right)+2 n_{0} v_{0} \sqrt{D}\right] /\left|r_{0}\right|, \quad N \varepsilon_{D}=1 \quad \text { for }\left|r_{0}\right| \neq 1,4 .
\end{aligned}
$$

Remark. In the special case of $v_{0}=1$, this result coincides with Degert's.

Proof. Let $\varepsilon_{D}=\left(t_{0}+u_{0} \sqrt{D}\right) / 2$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{D})$ and ε_{1} be the right-hand side of a formula for ε_{D} in Theorem 1. Then, it is easily shown that $u_{0}^{2} D=t_{0}^{2} \mp 4,4 t_{0} \equiv 0(\bmod 4)$ and that ε_{1} is a unit of $\boldsymbol{Q}(\sqrt{D})$. Here, if we suppose $\varepsilon_{D} \neq \varepsilon_{1}$, then it yields a contradiction. For, in the case of $\left|r_{0}\right|>4$, we get

$$
\varepsilon_{1}=\left[\left(2 n_{0}^{2}+r_{0}\right)+2 n_{0} v_{0} \sqrt{D}\right] /\left|r_{0}\right| \geqq \varepsilon_{D}^{2}=\left(t_{0}^{2} \pm 2+t_{0} u_{0} \sqrt{D}\right) / 2 .
$$

Hence, we have $n_{0} v_{0}>t_{0} u_{0}$. On the other hand, since v_{0} is the least positive integer such that $v_{0}^{2} D=n_{0}^{2}+r_{0},-n_{0}<r_{0} \leqq n_{0}, 4 n_{0} \equiv 0\left(\bmod r_{0}\right)$, we get $v_{0}<u_{0}$ and $n_{0}<t_{0}$, hence we have $n_{0} v_{0}<t_{0} u_{0}$. This is a contradiction. In other cases, we can easily induce contradiction similarly.
3. For any given D, it is generally difficult to find v_{0} in Theorem 1 , but if we use the continued fraction expansion of \sqrt{D}, v_{0} is easily
obtained. In particular, if the length k of the period in the continued fraction expansion of \sqrt{D} is even ($k=2 m$), then v_{0} in Theorem 1 is determined by the $(m-1)$ th convergent in the continued fraction expansion of \sqrt{D} as follows:

Theorem 2. Let D be a positive square-free integer such that $D \not \equiv 5(\bmod 8)$ and suppose that D has a prime divisor p such that $p \equiv 3$ $(\bmod 4)$. Let k be the length of the period in the regular continued fraction expansion of $\sqrt{D}, A_{\nu} / B_{\nu}$ be its ν th convergent and let $\left(\sqrt{D}+P_{\nu}\right) / Q_{\nu}$ be its ν th complete quotient. Then, k is even $(k=2 m)$ and v_{0} in Theorem 1 is equal to B_{m-1}. Moreover, $\left|r_{0}\right|$ in Theorem 1 is equal to Q_{m} which is equal to neither 1 nor 4 and the fundamental unit ε_{D} of $\boldsymbol{Q}(\sqrt{\bar{D}})$ is of the following form:

$$
\varepsilon_{D}=\left[\left(2 A_{m-1}^{2}+(-1)^{m-1} Q_{m}\right)+2 A_{m-1} B_{m-1} \sqrt{ } \bar{D}\right] / Q_{m}, \quad N \varepsilon_{D}=1 .
$$

Proof. From the assumption on D, it is easily proved that the length k of the period is even ($k=2 \mathrm{~m}$) and that the fundamental unit ε_{D} of $\boldsymbol{Q}(\sqrt{D})$ is of the form $\varepsilon_{D}=t_{0}+u_{0} \sqrt{D}$, (t_{0}, u_{0} integers). Hence, we have $\varepsilon_{D}=A_{k-1}+B_{k-1} \sqrt{D}$ and $N \varepsilon_{D}=1$. On the other hand, we have $Q_{m} \neq 1$ and the following relations (cf. [5]):

$$
\begin{aligned}
& 2 A_{m-1} \equiv 2 D \equiv 0\left(\bmod Q_{m}\right) \\
& B_{m-1}^{2} D=A_{m-1}^{2}+(-1)^{m-1} Q_{m} .
\end{aligned}
$$

From these relations, we have $Q_{m} \neq 4$. Let ε_{1} be the right-hand side of the formula for ε_{D} in Theorem 2, then ε_{1} is a unit of $Q(\sqrt{D})$ and ε_{1} is equal to ε_{D}, since $1<\varepsilon_{1}<\varepsilon_{D}^{2}$. Therefore, v_{0} in Theorem 1 is equal to B_{m-1} and $\left|r_{0}\right|=Q_{m}$.
4. As a sufficient condition for $Q_{m}=2$, we obtain

Theorem 3. ${ }^{1)}$ Let $D=p$ or $2 p$, where p is a prime number with $p \equiv 3(\bmod 8)(\mathrm{resp} . \equiv 7(\bmod 8)) . \quad$ Let $k=2 m$ be the even length of the period in the regular continued fraction expansion of \sqrt{D} and A_{ν} / B_{ν} be its ν th convergent. Then, $Q_{m}\left(=\left|r_{0}\right|\right)$ in Theorem 2 is equal to 2 and the fundamental unit ε_{D} of $\boldsymbol{Q}(\sqrt{D})$ is of the following form:
$\varepsilon_{D}=A_{m-1}^{2}+1+A_{m-1} B_{m-1} \sqrt{ } \bar{D}\left(\right.$ resp. $\left.A_{m-1}^{2}-1+A_{m-1} B_{m-1} \sqrt{D}\right), \quad N \varepsilon_{D}=1$.
Proof. Since $2 D \equiv 0\left(\bmod Q_{m}\right)$ and $D=p$ or $2 p$, we have $Q_{m}=1,2$, $4, p, 2 p$ or $4 p$. On the other hand, $1<Q_{m}<\sqrt{D}$ and $Q_{m} \neq 4$ hold. Hence, we get $Q_{m}=2$. Thus, from Theorem 2, we have $\varepsilon_{D}=A_{m-1}^{2} \pm 1$ $+A_{m-1} B_{m-1} \sqrt{D}$. Here, in the case of $p \equiv 3(\bmod 8), A_{m-1}^{2}-1$ $+A_{m-1} B_{m-1} \sqrt{D}$ is not a unit, since $A_{m-1}^{2}-D B_{m-1}^{2} \not \equiv-2(\bmod 8)$. Therefore, ε_{D} is equal to $A_{m-1}^{2}+1+A_{m-1} B_{m-1} \sqrt{D}$. Similarly, we can prove the other case.

Remark. In the case of $D=p q,(p<q)$, or $2 p q$, $(2 p<q)$, with $D \not \equiv 5(\bmod 8)$, where p and q are odd prime numbers with p or $q \equiv 3$ $(\bmod 4)$, Nakahara shows in [4] that Q_{m} in Theorem 2 is equal to one

1) M. Yamauchi conjectured this fact and orally informed it to author.
of the three numbers $2, p$ and $2 p$. Using this fact, he proves that the fundamental unit of $Q(\sqrt{D})$ has one of the following six forms: $A_{m-1}^{2} \pm 1+A_{m-1} B_{m-1} \sqrt{D}, \quad \frac{2}{p} A_{m-1}^{2} \pm 1+\frac{2}{p} A_{m-1} B_{m-1} \sqrt{D}, \quad \frac{1}{p} A_{m-1}^{2} \pm 1$ $+\frac{1}{p} A_{m-1} B_{m-1} \sqrt{D}$.

In the case of real quadratic fields $\boldsymbol{Q}(\sqrt{D})$ with $N \varepsilon_{D}=-1$, we can obtain similar result to Theorem 3 as follows:

Theorem 4. Let $D=p_{1}$ or $2 p_{2}$, where p_{1} and p_{2} are prime numbers with $p_{1} \equiv 1(\bmod 8)$ and $p_{2} \equiv 5(\bmod 8)$. Let $k=2 m+1$ be the odd length of the period in the regular continued fraction expansion of \sqrt{D} and A_{ν} / B_{ν} be its ν th convergent. Then, the fundamental unit ε_{D} is of the following form:

$$
\varepsilon_{D}=A_{m} B_{m}+A_{m-1} B_{m-1}+\left(B_{m}^{2}+B_{m-1}^{2}\right) \sqrt{D}, \quad N \varepsilon_{D}=-1 .
$$

Proof. Let $\sqrt{D}=\left[b_{0}, \overline{b_{1}, \cdots, b_{k}}\right]$ be the regular continued fraction expansion of \sqrt{D}, where k is the length of the period. From the condition on D, it is evident that k is odd $(k=2 m+1)$ and $\varepsilon_{D}=A_{k-1}$ $+B_{k-1} \sqrt{D}$. On the other hand, it is well known that b_{1}, \cdots, b_{k-1} are symmetric: $\quad b_{k-\nu}=b_{\nu},(1 \leqq \nu \leqq k-1)$. Hence, we get $A_{k-1}=A_{m} B_{m}$ $+A_{m-1} B_{m-1}$ and $B_{k-1}=B_{m}^{2}+B_{m-1}^{2}$. Therefore, we have the Theorem 4.
5. Finally we give a generalization of Morikawa's result from our view-point.

Theorem 5.2) For any positive integer $a>0$, put $a^{2} \pm 2=b^{2} D$, where D is square-free. If $D \neq 2,3$, and 6 , and if at least one of the following conditions (α) and (β) is satisfied, then $Q_{m}\left(=\left|r_{0}\right|\right)$ in Theorem 2 is equal to 2 and $\varepsilon=a^{2} \pm 1+a b \sqrt{D}$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{D})$:
(α) $\quad a<(2 D-1) \sqrt{D-2}$ or $b<2 D-3$,
(β) $a=p^{k}$ or $2 p^{k}$, where p is a prime number and k is a positive integer.

Proof. Let $\varepsilon=(t+u \sqrt{D}) / 2>1$ be a unit of $Q(\sqrt{D})$ with $N \varepsilon=1$. Put $\varepsilon^{n}=\left(t_{n}+u_{n} \sqrt{D}\right) / 2,(n \geqq 1)$. Then t_{n} is a monic polynomial of t with integral coefficients and has the following properties:
(i) t_{n} is a monotonically increasing function of t,
(ii) $t_{n}-2=(t-2)\left\{(t-2)^{(n-1) / 2}+\cdots+\frac{1}{24}\left(n^{3}-n\right)(t-2)+n\right\}^{2}$ for odd n,
(iii) $t_{n}+2=(t+2)\left\{(t+2)^{〔 n-1) / 2}-\cdots \pm \frac{1}{24}\left(n^{3}-n\right)(t+2) \mp n\right\}^{2}$ for odd n.
From these facts, we can prove our Theorem 5 immediately.

[^0]
References

[1] G. Degert: Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92-97 (1958).
[2] M. Kutsuna: On the fundamental units of a certain type of real quadratic fields (Informal notes in Japanese). Suron Hanti, 1, 116-138 (1971).
[3] R. Morikawa: On the fundamental units of certain real quadratic number fields (to appear).
[4] T. Nakahara: On the fundamental units and an estimate of the class numbers of real quadratic fields. Rep. Fac. Sci. Eng. Saga Univ., 1, 104-116 (1973).
[5] O. Perron: Die Lehre von den Kettenbrüchen, Band I. Teubner Verlag (1954).

[^0]: 2) Morikawa [2] proved this theorem in the special case that a is a prime number.
