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1. Preliminaries. Let ds2-Y, gij(x)dxdxj be a Riemannian
ij

metric on Rn. The Laplacian $-- /-g-g*J associated

with this metric naturally defines a self-adjoint operator in L(R)
with respect to the measure dx. This generates a one parameter

group of unitary operators Ut--exp i,-At ,0, t e R. For any f in
2

the domain of A, the unction u= Utf satisfies the following equations

(1) (i+ 1 )A u--0 for any e R,

( 2 s--lim Utf=f.
t0

The aim of this note is to construct, under assumptions in } 2 and
3, the distribution kernel U(t,x, y) o the operator U. Our proof
ollows Feynman’s idea [2]. Combining technique o Calderbn-
Vaillaneourt with method of oscillatory integrals [4], we can give
rigorous mathematical reasoning to Feynman’s idea.

2. Parametrix. Let us denote by q=q($,y,
the solution of the Hamiltonian equations

(3) dq aH dp aH.
d$ 3p dt 3q

satisfying initial conditions at =0; q=y and p=, where H is the
1Hamiltonian funetion H(q,p)- g*(q)pp. Since H is a homo-

geneous unetion of p’s, we have
( 4 ) q(t, y, v)=q(1, y, tV) and p(t, y, V)=p(1, y,
Our first assumption is that

the canonical transformation Z (x, V)(x, )=(q(t, x, V),
(A.I) p(t, x, )) induces global diffeomorphism of the base space R.
The generating unetion o this canonical transformation is

s0(t, x, 0)a,+

where L(q, O) is Lagrangean corresponding to Hamiltonian H and the
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integral should be taken along the classical orbit from x. x
=x(t, x, ) is the unique solution of the equation x-q(t, x, ). We
set
( 6 S(t, x, , y)= So(t, x, )-. y.

Our parametrix is o the orm
7 E(t, x, , y)-- exp i,S(t, x, , y)e(t, x, )

with
N

8 e(t, x, )- (i,)-e(t, x, ),
’=0

where N will be fixed later. Amplitude unctions e(t, x, ) are deter-
mined inductively by

(9) D---t-er+lD "zl+-:-ASe++ Ae=O, e_-O,

with initial conditions co(O, x, $)= 1 and e(0, x, )-0. Here D 0

j=l

(10)

Thus we have

co(t, x, )=(g(x)/g(x(t, x, )))/ and

e(t,x,)---eo(t,x ) Ito lzer_l(8, z(8 )/eo(8, z(8
2

where z(s)--q(s, x(t, x, ), ). Our parametrix satisfies

Z /

Later we use homogeneity property;

(12) (x)(O-) (__(__3e(t x, )= t+ O
/ \ I

e(1, x, t).

3. Assumptions. We assume the following assumptions (A-II)
(A-VI) as well as (A-I) in the previous section. (A-II) there exists

a coos an >0  uch we h ve (v
< C; for any x, y in Rn, - (1, , ", ) e Rn. (A-III) for any multi-

index a, there exists a constant C>O such that we have -. g(x)

<C, for any x e R. (A-IV) there exists a constant C.>0 such that
we have Igrade (So(t, x, )-So(t, z, ))I>=C Ix-zl and Igrad (So(t, y, )
-So(t, y, r]))I> C. I$-1 for any t e [0, T],x,z, y e R and , inR. (A-V)
for any multi-index a,a2, there exists a constant C>0 such that

(we have (So(t x,)-So(t,z,$)) <Cx-z and (So(t,y,)

y, ))IC$- or any t in [0, T] and x, z, y e R and , e R

(A-VI) or any multi-indices a, , there exists a constant C>0 such
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that we have --/ \ 3 /
e0(t, x, ) __< C for any t e [0, T], x e R, e R.

Remark. 1) These assumptions may be redundant. 2) Assump-
tion (A-I) is very restrictive. We can use Maslov’s theory of canonical
operators and replace (A-I) with less restrictive assumption.

4. Results. We define two integral transformations;

(13) EN(t)f(x)--(/2) ff E(t, x, , y)f(y)dyd,
JJ

F(t)f(x)
(14) (i,)-(,/2) --f Ae(t, x, ) exp i,S(t, x , y)f(y)dyd.

R2n 2
These are well defined for functions f(x) in C(Rn). For the sake of
brevity we shall omit writing domains of integration if there is no
fear of confusion.

Theorem 1. The equality (13) naturally defines a bounded linear
operator E(t), t e [0, T], in L(Rn) with respect to the measure dx.

Theorem 2. We have
T T(15) 1 I]E()E()...E(5)--exp i,-T]l=O.

cf. R. Feyman [2].. Outline of proof. From (10) and (A-VI) we see all of
e(t, x, ) enjoy the same estimate as eo(t, x, ).

Lemma. Assume that a(x, ) is a function in C(Rn) and that for
any multi-indices , fl there exists a constant C such that we have

k x I k
Define a mapping A as

(17) df(x)=[[ a(x, ) exp i,S(t, x, , y)f(y)dyd

for any f in C(R). Then there exists a constant C0 such that we
have
(18) IIAfIlC,- ]lfll,
where is the L-norm and C> 0 is independent of t,, and f (cf. [3]).

Theorem 1 follows rom this lemma and (15). If we use this lemma
or a(x, )=e(1, x, ) we have
(19) IIF(t)f llCtE- IIfll.
Equality (11) implies that

(20) E,():expi+R() R,()-: exp i(t-s)F(s)ds.2
(19) and (20) mean that
(2) R(t) Ct +1-.

T E TWe have or k products o operators N()()...N()
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( (exp,i T z]+R expi,--+RN Since
k 2 k

1
exp i,t is unitary,

2

This and (21) prove The-

orem 2 if we choose N_> 1.
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