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129. Fundamental Solution of Partial Differential Operators
of Schrodinger’s Type. 1

By Daisuke FUJIWARA
Department of Mathematics, University of Tokyo

(Comm. by Ko6saku YoSIDA, M. J. A., Oct, 12, 1974)

§ 1. Preliminaries. Let ds’=) g,;(x)dx,dx; be a Riemannian
©j

metric on R*. The Laplacian 4 =—1i >, 9 («/ ?g“—a—> associated
Vg T o, ox;
with this metric naturally defines a self-adjoint operator in L*(R")

with respect to the measure v g doz. This generates a one parameter

group of unitary operators U,=exp %in“At, y>0,tc R. For any f in

the domain of 4, the function u=U, f satisfies the following equations
(1) (iu—;——{—%d)uzo for any te R,

(2) s—limU,f=7f.

t—0

The aim of this note is to construct, under assumptions in §§ 2 and
3, the distribution kernel U(t,x,y) of the operator U,. Our proof
follows Feynman’s idea [2]. Combining technique of Calderon-
Vaillancourt with method of oscillatory integrals [4], we can give
rigorous mathematical reasoning to Feynman’s idea.

§ 2. Parametrix. Let us denote by ¢=q(t,¥,7) and p=p{E, ¥y,
the solution of the Hamiltonian equations
(3) dg_oH  dp__oH

dt op dt aq

satisfying initial conditions at t=0; ¢g=y and p=y, where H is the

Hamiltonian function H(q, p):% > 94(@p:p;. Since H is a homo-
7

geneous function of p’s, we have
(4) i, v, P=aqQ1,y,tp and tp{,y,n=pQ1,y,.
Our first assumption is that

the canonical transformation %,:(z°,7)—(x,&=(q(t,x°,7),
(A.D) p(t, 2°, 7)) induces global diffeomorphism of the base space R".
The generating function of this canonical transformation is

(5) Sit, z, 77)=j: L(g, )ds+2°-7,

where L(q, ¢) is Lagrangean corresponding to Hamiltonian H and the



No. 8] Partial Differential Operator of Schrédinger Type. I 567

integral should be taken along the classical orbit from z°. x°
=2x°(t, #,7) is the unique solution of the equation x=q(t, 2°,7). We
set

(6) S(t,x,g,?/)=so(t,x,$)—<§'y-

Our parametrix is of the form

(7) Ey(, x, &, y)=exp S, x, & yet, x, &)
with

(8) elt, 2, =3 () "e,(t, 2, ),

where N will be fixed later. Amplitude functions e,(¢, z, &) are deter-
mined inductively by

(9) %er+1+";‘dser+1+%der=0, 3—1=0,
with initial conditions ¢,0, z, &)=1 and e,(0, z, &=0. Here _I_)l?{,z%
+i q j——a—. Thus we have
=177 0q,
(10) et x, 8)=(9(x)/9(x°(, z, £))"* and

e,(t, 2, 8)=—e(t, z,8) I: %A 2€,1(8, 2(8), &) | ey(s, 2(s), £)ds,
where 2(s)=q(s, 2°(t, x, &), &). Our parametrix satisfies

1) (»% ¥ %A)EN@, @, &9 = (»M%Aezv(t, @, &) exp iS.

Later we use homogeneity property;
@ (2)(2)etmo=trr( 2 (LYo m 0.
ox o0& ox o0&
§ 3. Assumptions. We assume the following assumptions (A-II)
~(A-VI) as well as (A-I) in the previous section. (A-II) there exists

a constant C,>0 such that we have Cog(Z 9 j(x)&sj) / <Z‘ yu(y)&fj)
<C;!'for any z,y in R, £=(&,,&,, - - -, &) e R*. (A-III) for any multi-

index «, there exists a constant C,>0 such that we have K»g—)agi ,-(oc)‘
2.

<C,, for any x ¢ R*. (A-IV) there exists a constant C,>0 such that

we have |grad, (Si(t, x, &) —S\(t,2,8)[=C,|x—2| and |grad, (S/(t,y, &)

-8, ¥, ) |=C,|é—y|forany t € [0, T1,x, 2,y € R*and &, 5 in R*. (A-V)

for any multi-index «,|w|=2, there exists a constant C>0 such that

we have }(ais)"(so(t,x,s)—s0<t,z,e:=>> <Clz—2| and ‘(%)“(s()(t,y,@

—S(t, v, 77))|§C|§——77| for any ¢ in [0, T'] and «,2,y ¢ R™ and &,5¢ R".

(A-VI) for any multi-indices «, 5, there exists a constant C>0 such
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that we have ’(?a—) (%) e (t, x, 5)‘§C forany tel0,T],zc R*, &c R".
A
Remark. 1) These assumptions may be redundant. 2) Assump-
tion (A-I) is very restrictive. We can use Maslov’s theory of canonical
operators and replace (A-I) with less restrictive assumption.

§ 4. Results. We define two integral transformations;
13) Ex®f@=6/20" [[ Byt 0/ @)dyd,
Fy®)/(@)
=@ /20" [[ 1 deatt, 2, &) exp S(t, 2,6, 1) Wiz

These are well defined for functions f(x) in Cy(R™). For the sake of
brevity we shall omit writing domains of integration if there is no
fear of confusion.

Theorem 1. The equality (13) naturally defines a bounded linear
operator Ey(t),t c [0, T1, in LA(R") with respect to the measure v g dz.

Theorem 2. We have
a5  lim EN(%_>EN<%> - -EN<—£—>—exp iu“T-;—AH:O.
¢f. R. Feyman [2].

§ 5. Outline of proof. From (10) and (A-VI) we see all of
e, (t, z, &) enjoy the same estimate as ¢,(t, x, &).

Lemma. Assume that a(x, &) is a function in C*(R™) and that for
any multi-indices «, B there exists a constant C such that we have

(14)

a “ a ‘8 n n
(16) '(%) (3_8) a(x,E)lgC for any x € R*, & ¢ R™.
Define a mapping A as
an ar@=[  a@ & exp S, &1 @)dyds

for any f in Cy(R™). Then there exists a constant C>0 such that we

have

(18) JASI=Co ™| S ls

where | | is the L*-norm and C>0 is independent of ¢,v and f (cf. [3]).
Theorem 1 follows from this lemma and (15). If we use this lemma

for a(x, &)=4dey(1, x, &) we have

(19) Fx@f=Ct Y| fIl.

Equality (11) implies that

20)  E,(t)=exp iy%tA+RN(t), RN(t)zr exp m%(t—s)AFN(s)ds.
0

(19) and (20) mean that
21 [Ry(@®||=CtV*+y=¥.

We have for k products of operators EN(%>E(—%)EN<—%)
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exp ui—;- %A + R, (%)) . (exp iu_;_ %A + RN(%_)). Since
i—;—vtd is unitary, HEN(%)EN<£) N EN(1> —exp z—;— vTAH

k k
Lk T \|} T k .
= ( ; ) “RN(T) :<1+HRN(T) ) —1. This and (21) prove The-
=1
orem 2 if we choose N=>1.

I
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