121. Kähler Metrics on Elliptic Surfaces

By Yoichi Miyaoka
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., Oct. 12, 1974)

The purpose of this note is to outline a proof of the following
Theorem. An elliptic surface admits a Kähler metric if and only if its first Betti number is even.

Professor Kodaira raised a problem: Does every compact analytic surface with an even first Betti number admit a Kähler metric?

Our theorem solves this problem in the affirmative except the case in which the surface is a $K 3$ surface.

1. Some cohomology groups on elliptic surfaces. Let $\Phi: B \rightarrow \Delta$ be an elliptic surface with a section $o: \Delta \rightarrow B$. We employ the notation of Kodaira [2]. Thus J, G and f denote, respectively, the functional invariant of B, the homological invariant of B and the normal bundle of $o(\Delta)$ in B.

The following proposition is due to Shioda [5].
Proposition 1. There exist canonical homomorphisms

$$
\begin{aligned}
& \alpha: H^{1}(\Delta, G) \rightarrow j^{*}\left(H^{2}(B, Z)\right) \subset H^{2}(B, \mathcal{O}), \\
& \beta: H^{1}(\Delta, \mathcal{O}(f)) \rightarrow H^{2}(B, \mathcal{O}),
\end{aligned}
$$

such that
(i) $\operatorname{Im} \alpha$ is a commensurable subgroup of $j^{*}\left(H^{2}(B, Z)\right)$,
(ii) β is an isomorphism,
(iii) the diagram

is commutative, where i^{*} and j^{*} denote the natural homorphisms induced by the canonical injections $i: G \rightarrow \mathcal{O}(\uparrow)$ and $j: Z \rightarrow \mathcal{O}$, respectively.

Proof. We have canonical isomorphisms

$$
\begin{gathered}
G \stackrel{\approx}{\rightrightarrows} R^{1} \Phi_{*}(Z), \\
\mathcal{O}(\mathfrak{f}) \stackrel{\approx}{\rightrightarrows} R^{1} \Phi_{*}\left(\mathcal{O}_{B}\right),
\end{gathered}
$$

and, moreover, i is compatible with j^{*} through the isomorphisms. We shall identify $G, \mathcal{O}(f)$ and i, respectively, with $R^{1} \Phi_{*}(Z), R^{1} \Phi_{*}\left(\mathcal{O}_{B}\right)$ and j^{*}. Let us consider the Leray spectral sequences:

$$
\begin{gathered}
\quad E_{2}^{p q}=H^{p}\left(\Delta, R^{q} \Phi_{*}(\boldsymbol{Z})\right) \Rightarrow H^{p+q}(B, \boldsymbol{Z}), \\
{ }^{\prime \prime} E_{2}^{p q}=H^{p}\left(\Delta, R^{q} \Phi_{*}\left(\mathcal{O}_{B}\right)\right) \Rightarrow H^{p+q}\left(B, \mathcal{O}_{B}\right) .
\end{gathered}
$$

Since $\Phi: B \rightarrow \Delta$ is a flat (2,1)-fibre manifold, it is trivial that ' E_{r} degenerates for $r \geqq 3$, and that " E_{r} degenerates for $r \geqq 2$. We thus obtain the canonical isomorphism

$$
\beta: H^{1}\left(\Delta, R^{1} \Phi_{*}\left(\mathcal{O}_{B}\right)\right) \approx H^{2}\left(B, \mathcal{O}_{B}\right)
$$

and the canonical injection

$$
H^{2}(\Delta, Z) / \operatorname{Im}^{\prime} d_{2}^{0,1} \stackrel{\iota}{\longrightarrow} H^{2}(B, Z) .
$$

In virtue of the functoriality of the Leray sequences, the diagram

is commutative, and a fortiori $j^{*}{ }_{\circ}$ is a zero map. Now we define the natural homomorphism

$$
\alpha: H^{1}\left(\Delta, R^{1} \Phi_{*}(Z)\right) \rightarrow j^{*}\left(H^{2}(B, Z)\right)
$$

One sees that the condition (iii) is automatically satisfied. To prove (i), we consider the following two cases:
(a) The case where the functional invariant J is not constant. Let $\rho(B)$ denote the Picard number of B. Then $\operatorname{rank} \operatorname{Im} i^{*}=b_{2}(B)-\rho(B)=\operatorname{rank} j^{*}\left(H^{2}(B, Z)\right)$.
(See Ogg [4] and Shioda [5].) This proves the assertion.
(b) The case where J is constant (cf. Deligne [1]). $\Phi: B \rightarrow \Delta$ has a structure of an abelian scheme over Δ with the identity o. The multiplication by an integer m is an endomorphism μ_{m} over Δ. μ_{m}^{*} acts naturally on $H^{p}\left(\Delta, R^{q} \Phi_{*}(Q)\right)$ as the multiplication by m^{q}. Since μ_{m}^{*} and ' d_{2} are commutative, the diagram

is commutative. This implies that ${ }^{\prime} E_{2}$ degenerates. Thus we obtain the following isomorphism

$$
\underset{p+q=r}{\oplus} H^{p}\left(\boldsymbol{\Delta}, R^{q} \Phi_{*}(\boldsymbol{Q})\right) \stackrel{\approx}{\rightrightarrows} H^{r}(B, \boldsymbol{Q})
$$

On the other hand, μ_{m}^{*} acts on $H^{2}(B, \mathcal{O})=H^{1}\left(\Delta, R^{1} \Phi_{*}(\mathcal{O})\right)$ as the multiplication by m. Hence $\alpha: H^{1}\left(\Delta, R^{1} \Phi_{*}(Q)\right) \rightarrow j^{*}\left(H^{2}(B, Q)\right)$ is surjective, which completes the proof.
Q.E.D.

As a corollary we obtain the following
Proposition 2. $i^{*}\left(H^{1}(\Delta, G)\right) \otimes \boldsymbol{R}=H^{1}(\Delta, \mathcal{O}(\mathfrak{\uparrow}))$.
Proof. In fact $j^{*}\left(H^{2}(B, Z)\right) \otimes \boldsymbol{R}=H^{2}(B, \mathcal{O})$, because B is a compact Kähler manifold. Q.E.D.
2. Proof of the theorem. Let $\Phi: B \rightarrow \Delta$ be an elliptic surface with a section $o: \Delta \rightarrow B . \quad \Phi^{\#}=\Phi \mid B^{\#}: B^{\#} \rightarrow \Delta$ has the structure of a (nonproper) abelian scheme over Δ with the identity o, and the multiplica-
tion by an integer m is an endomorphism μ_{m} of $B^{\#}$ over Δ. Evidently μ_{m} can be considered as a rational endomorphism of B over Δ with a finite set of fundamental points I.

Proposition 3. $\mu_{m} \mid(B-I): B-I \rightarrow B$ is everywhere of maximal rank.

Proof. Let R be the ramification locus of μ_{m}. Then $K_{B-I}=\mu_{m}^{*} K_{B}$ $+[R]$. Observing the following commutative diagram

we have

$$
K_{B-I}=\iota^{*} K_{B}=\iota^{*} \Phi^{*}\left(K_{\Delta}-\mathfrak{f}\right)=\Phi^{\prime *}\left(K_{\Delta}-\mathfrak{f}\right)=\mu_{m}^{*} \Phi^{*}\left(K_{\Delta}-\mathfrak{f}\right)=\mu_{m}^{*} K_{B} .
$$

Hence $[R]$ is trivial. This proves $R=0$.
Q.E.D.

For $\gamma \in H^{1}\left(\Delta, \Omega\left(B_{0}^{\#}\right)\right), B^{r}$ is defined to be an elliptic surface over Δ and $\mu_{m}: B^{r} \rightarrow B^{m_{r}}$ is a meromorphic mapping with a finite set of fundamental points I^{r}. We prove similarly that $\mu_{m}: \quad B^{r}-I^{r} \rightarrow B^{m r}$ is everywhere of maximal rank. Combined with the corollary to Proposition 1 in [3], this fact implies the following

Proposition 4. B^{r} is a Kähler surface if $B^{m_{r}}$ is a Kähler surface for some integer m.

Next, we prove
Proposition 5. Let $E \rightarrow \Delta$ be an elliptic surface free from multiple fibres. If the first Betti number is even, then E is a Kähler surface.

Proof. We can express $E=B^{r}$ for a suitable $\gamma \in H^{1}\left(\Delta, \Omega\left(B_{0}^{*}\right)\right.$) (cf. Kodaira [2], $\S \S 8$ and 9$). \quad b_{1}(E)$ is even if and only if the "Chern class" $c(\gamma) \in H^{2}(B, G)$ is an element of finite order g in $H^{2}(B, G)$. It suffices therefore to prove that $B^{m r}$ is a Kähler surface for some integer m. Replacing γ by $g \gamma$, we may assume that $c(\gamma)=0$ and that $\gamma \in H^{1}(\Delta, \mathcal{O}(f)) / H^{1}(\Delta, G)$. From Proposition 2 we infer that $\{k \gamma\}_{k=1,2, \ldots}$ has a subsequence $\left\{\gamma_{k}\right\}_{k=1,2, \ldots}$ which converges to γ_{0} with a finite order. Hence for a suitable $m \in Z, B^{m r}$ is a small deformation $B^{r_{0}}$. This proves the assertion.

> Q.E.D.

Let $E \xrightarrow{\Phi} \Delta$ be an elliptic surface. Then we can find a finite Galois covering $\tilde{\Delta} \rightarrow \Delta$ such that
(i) the induced fibre variety $\tilde{E} \xrightarrow{\tilde{D}} \tilde{\Delta}$ is a non-singular elliptic surface free from multiple fibres,
(ii) the induced mapping $p: \tilde{E} \rightarrow E$ is a finite Galois covering whose branch locus is a regular fibre E_{0}.
(For a proof, see Kodaira [2], § 6.) Therefore, by the aid of Proposition 2 in [3], the theorem is an immediate corollary to the following

Lemma. If $b_{1}(E)$ is even, then $b_{1}(\tilde{E})$ is also even.
Proof. Let $\Gamma=\operatorname{Aut}(\tilde{\Delta} / \Delta)$ denote the Galois group. By considering the Leray spectral sequences, we have the commutative diagram:

Now assume that $b_{1}(\tilde{E})$ is odd. Then we infer that $R^{1} \tilde{\Phi}_{*}(\boldsymbol{Q})$ is trivial (cf. [2], § 9) and that \tilde{q} is surjective. For any $\xi \in H^{2}(\tilde{\Delta}, Q)$ there exists $\psi \in H^{0}\left(\tilde{\Delta}, R^{1} \tilde{\Phi}_{*}(Q)\right)$ such that $\xi=\tilde{q}(\psi)$. Because Γ acts trivially on $H^{2}(\tilde{I}, Q)$, we have

$$
\xi=\frac{1}{|\Gamma|} \sum_{i \in \Gamma} \gamma^{*} \xi=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} q\left(\gamma^{*} \psi\right) .
$$

This proves that q is surjective. Moreover it turns out that $R^{1} \Phi_{*} Q$ is trivial. In fact, since $\left.R^{1} \tilde{\Phi}_{*} \boldsymbol{Q}\right|_{P}(P \in \tilde{d})$ contains a 1-dimensional Γ-invariant subspace, $\gamma \in \Gamma$ has the following matrix expression:

$$
\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \in S L(2, Z)
$$

On the other hand Γ is a finite group. Hence γ acts on $R^{1} \tilde{\Phi}_{*} Q$ trivially. Thus we have proved that $\operatorname{dim} \operatorname{Ker} q=1$ and therefore $b_{1}(E)=b_{1}(\Delta)+1$ =odd.
Q.E.D.

References

[1] P. Deligne: Formes modulaires et représentations l-adiques. Sem. Bourbaki 1968/69, Springer Verlag, Berlin-Heidelberg-New York (1971).
[2] K. Kodaira: On compact analytic surfaces. II, III. Ann. of Math., 77, 563-626 (1963); 78, 1-40 (1963).
[3] Y. Miyaoka: Extension theorems for Kähler metrics (to appear).
[4] A. P. Ogg: Elliptic curves and wild ramification. Amer. J. of Math., 89, 1-21 (1967).
[5] T. Shioda: On elliptic modular surfaces. J. Math. Soc. Japan, 24, 20-59 (1972).

