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1. By a right S-system Ms over a semigroup S we mean a set M
together with a mapping (x, a)xa of MS into M satisfying

x(ab)--(xa)b
for all x e M and a, b e S. A non-empty subset N of a right S-system
Ms is called an S-subsystem of Ms if NSN. An S-subsystem N of a
right S-system Ms is called R-pure in S if

N Ma-Na
for all a e S. Since the inclusion is true for every S-subsystem N
o Ms, the essential requirement is

N ffl MaNa
for all a e S. A right S-system Ms is called R*-pure if every S-sub-
system of Ms is R-pure in S.

In [3] the author proved that for a semigroup S with an identity
the following conditions are equivalent"

(1) S is regular.
(2) Every unital right S-system Ms is R*-pure.
(3) S is R*-pure.
In this note we shall give another properties of pure S-subsystems

of a right S-system Ms over a semigroup S. For the terminology not
defined here we refer to the book by A. H. Clifford and G. B. Preston [1].

2o A subsemigroup B of a semigroup S is called a bi-ideal of S
if BSBB. We denote by [b] the principal bi-ideal of a semigroup S
generated by b in S, that is,

[b]-- b U b [J bSb.
First we give the ollowing.

Theorem 1. For an S-subsystem N of a right S-system Ms over
a semigroup S the following conditions are equivalent"

(1) N is R-pure in S.
(2) N MB NB for all bi-ideals B of S.
(3) N M[b]=N[b] for all b e S.
Proof. First we assume that N is R-pure in S. Let B be any

bi-ideal of S and p= qb (p e N, q e M, b e B) any element o N MB.
Then we have

p qb e N Mb Nb NB
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and so we have
NMBNB.

Since the converse inclusion always holds, we have
N MB-NB

for all bi-ideals B of S. Therefore we obtain that (1) implies (2). It
is clear that (2) implies (3). We assume that (3) holds. Let a be any
element of S and p-qa (p e N, q e M) any element of N Ma. Then
we have

p qa e N N M[a] N[a]
N(a U a U aSa)
Na U Na U N(aSa)
Na U (Na)a U (NaS)a
Na U Na U Na

--Na
and so we have

N MacNa
for all a e S. Thus we obtain that N is R-pure in S and that (3) im-
plies (1). This completes the proof of the theorem.

A right ideal A of a semigroup S is called R-pure in S if
A N Sa=Aa

or all a e S. A semigroup S is called R*-pure if every right ideal of
S is R-pure in S.

Since any right ideal o a semigroup S is an S-subsystem o a right
S-system S, the ollowing corollary is immediate rom the above theo-
rem.

Corollary 2. For a right ideal A of a semigroup S the following
conditions are equivalent"

(1) A is R-pure in S.
(2) A N SB=AB for all bi-ideals B of S.
(3) A NS[b]=A[b] for all b e S.
We denote by [a] the principal right ideal of a semigroup S gen-

erated by a in S, that is,
[a] a U aS.

Corollar :. For a semigroup S the following conditions are
equivalent"

(1) S is R*-pure.
(2) A SB AB

B orS.
(3) AS[b]=A[b]
(4) [a]r Sb--[a]rb
(5) [a] N SB [a]B
(6) [a] S[b]=[a][b]

for all right ideals A and for all hi-ideals

for all right ideals A and for all b e S.
for all a, b e S.
for all a e S and for all hi-ideals B of S.
for all a, b e S.
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Proof. It ollows rom Corollary 2 that (1) (3) are equivalent, and
that (4)(6)are equivalent. It is clear that (1) implies (4). We as-
sume that (4) holds. Let A be any right ideal o S and b any element
of S. Let a-- sb (a e A, s e S) be any element of A Sb. Then we have

a--sb e [a]Sb=[a]bAb
and so we have

ASbAb
or all b e S. This means that A is R-pure in S. Therefore we ob-
rain that (4) implies (1).

:. A semigroup S is called regular if, or any element a e S, there
exists an element x in S such that a=axa.

The equivalence o (1) and (2) in the next theorem is due to the
author ([3] Theorem 12). The rest of the proof can be easily proved.

Theorem 4. For an S-subsystem N of a right S-system Ms over
a regular semigroup S the following conditions are equivalent"

(1) N is R-pure in S.
(2) N Me--Ne for all idempotents e e S.
(3) N M[e] =N[e] for all idempotents e e S.
Corollary 5. For a right ideal A of a regular semigroup S the

following conditions are equivalent"
(1) A is R-pure in S.
(2) A Se Ae for all idempotents e e S.
(3) A S[e] =A[e] for all idempotents e e S.
4. A right S-system M is called unital if S contains an identity

1 such that xl-x for all x e M. A right S-system Ms is called torsion
free if xd=yd with d cancellable in S implies x=y, and is called divi-
sible if Md=M or every cancellable element d e S.

Theorem 6. Let Ms be a divisible torsion free right S-system
over a semigroup S. Then any R-pure S-subsystem N of Ms is divi-
sible.

Proof. Let x be any element o N. Then, since Ms is divisible,
there exists an element y in M such that x=yd or every cancellable
element d e S. Since N is R-pure in S,

x yd e N Md Nd.
This implies that there exists an element z in N such that

yd--zd.
Since Ms is torsion free, we have

y--zeN,
and so we have

NNd.
Since the converse inclusion always holds, we have

N=Nd
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for every cancellable element d e S. Therefore N is divisible.
Theorem 7. Any S-subsystem N of a unital right S-system Ms

over a group S is R-pure and divisible.
Proof. For any element a e S, we have

N-N1 N(a-a) (Na-)aNaN,
and so we have

N--Na
or all a e S. This holds or all cancellable elements a e S. Thus N is
divisible. On the other hand, we have

N ( Ma--Na (] Ma--Na
or all a e S. Therefore N is R-pure in S. This completes the proof
o the theorem.

5. A semigroup S is called normal i aS-Sa or all a e S ([4]).
Then we have the ollowing.

Theorem 8. Let Ms be a right S-system over a normal semigroup
S. Then the minimal S-subsystem N of Ms is R-pure and divisible.

Proof. For any element a of S, it ollows that
NaN.

Since S is normal, we have
(Na)S-N(aS) N(Sa) (NS)aNa.

This means that Na is an S-subsystem o Ms. Then it follows rom
this and the minimality o N that

Na--N
or all a e S. Then N is R-pure in S and divisible (see the proo of
Theorem 7). This completes the proof o the theorem.

Let A be any right ideal of a normal semigroup S. Then, as is
easily seen,

AS-SA
holds. Thus we have the ollowing lemma.

Lemma 9. Any one-sided ideal of a normal semigroup is two-
sided.

The ollowing corollary is immediate rom Theorem 8 and Lemma
9.

Corollary 10. The minimal right (left, two-sided) ideal of a nor-
mal semigroup is a group.

6. A semigroup S is called R-pure-free if it does not properly
contain any R-pure right ideal. In this section we give a non-trivial
class of R-pure-ree semigroups.

A commutative semigroup S is called archimedean if, or any ele-
ments a and b o S, there exist elements x and y in S and positive inte-
gers m and n such that

a’--xb and b--ya.
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By an N-semigroup we mean a commutative cancellative archimedean
semigroup without idempotents. Then we have the following.

Theorem 11. Any N-semigroup is R-pure-free.
Proof. Let A be any R-pure right ideal of an N-semigroup S, and

let a and s be respectively any elements of A and S. Since S is archi-
medean, there exist an element x in S and a positive integer m such
that

bm XS.

Since A is R-pure in S, we have
a--sx e A Sx--- Ax.

This implies that there exists an element b in A such that
sx=bx.

Since S is cancellative, we have
s=beA

and so we have

Therefore we obtain that

and that S is R-pure-free.

SGA.

S-A
This completes the proof of the theorem.
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