189. On Spaces which Admit Closure-Preserving Covers by Compact Sets

By Yûkiti KATUTA

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1974)

Let X be a T_1 -space which admits a closure-preserving closed cover \mathcal{F} by compact subsets. In [9], H. Tamano raised the question of whether or not such a space X must be paracompact. H. B. Potoczny gave in [6] a negative answer to this question, and proved in [7] that such a space X is paracompact whenever it is collectionwise normal.

In the same paper [7], he has stated that if each member of \mathcal{F} is a finite subset then X is θ -refinable, and if, in addition, there is a positive integer n such that each member of \mathcal{F} has no more than n points then X is metacompact. Moreover, he has conjectured that X must be always metacompact or θ -refinable without such severe restrictions.

In this paper, we shall give a solution to this problem.

Theorem 1. If a T_1 -space X has a closure-preserving closed cover \mathcal{F} by compact subsets, then X is metacompact.

It is known that a metacompact, collectionwise normal space is paracompact ([3] or [5]); consequently the above result of Potoczny follows immediately from our Theorem 1.

We need some lemmas to prove Theorem 1. A space X is said to be almost expandable [8], if for every locally finite collection $\{F_{\alpha} | \alpha \in A\}$ of subsets of X there exists a point-finite collection $\{G_{\alpha} | \alpha \in A\}$ of open subsets of X such that $F_{\alpha} \subset G_{\alpha}$ for every $\alpha \in A$; every metacompact space is almost expandable ([8]). A cover \mathcal{U} of a space is said to be directed, if for two members U and V of \mathcal{U} there is a member W of \mathcal{U} such that $U \cup V \subset W$.

The following lemma is an immediate consequence of [2, Theorem 2.2] (announced in [1]).

Lemma 1. If every directed open cover of a space X has a cushioned refinement, then X is almost expandable.

Lemma 2. If a space X has a closure-preserving closed cover \mathcal{F} by compact subsets, then X is almost expandable.

Proof. Let \mathcal{U} be a directed open cover of X. Since each member of \mathcal{F} is compact, we can easily prove that \mathcal{F} refines \mathcal{U} . Furthermore \mathcal{F} is a closure-preserving closed cover, so that \mathcal{F} is a cushioned refinement of \mathcal{U} ([4]). Hence, by Lemma 1, X is almost expandable. The following notations are due to [7]. Let \mathcal{F} be a closure-preserving closed cover of a space X. For each point x of X, we put K(x) $= X - \cup \{F \in \mathcal{F} | x \in F\}$. A point x is said to be *maximal* provided K(x)is not properly contained in any K(y). The set of all maximal points is denoted by $M(\mathcal{F})$. For a closed subset C of X, $\mathcal{F}_{c} = \{F \cap C | F \in \mathcal{F}\}$ is a closure-preserving closed cover of C. Then $M(\mathcal{F}_{c})$ is the set of maximal points of C with respect to \mathcal{F}_{c} .

The following two lemmas were proved in [7].

Lemma 3. If \mathcal{F} is a closure-preserving closed cover of X by compact subsets, then $M(\mathcal{F})$ can be decomposed into a discrete collection of compact subsets.

Lemma 4.*) Let X be a T_1 -space, and \mathcal{F} a closure-preserving closed cover of X by compact subsets. Let $\{V_n | n=1, 2, \cdots\}$ be a sequence of open subsets of X such that $M(\mathcal{F}) \subset V_1$ and $M(\mathcal{F}_{C_n}) \subset V_{n+1}$, where $C_n = X - \bigcup \{V_i | i=1, \cdots, n\}$ for $n=1, 2, \cdots$. Then $\{V_n | n=1, 2, \cdots\}$ covers X.

Lemma 5. Let \mathcal{F} be a closure-preserving closed cover of X by compact subsets, and let U be an open cover of X. Then for every closed subset C of X, there exists a point-finite collection \mathbb{C} of open subsets of X which covers $M(\mathcal{F}_c)$ and which refines U.

Proof. By Lemma 3, in the subspace C, there is a discrete collection $\mathcal{K} = \{K_{\alpha} | \alpha \in A\}$ of compact subsets such that $\cup \{K_{\alpha} | \alpha \in A\} = M(\mathcal{F}_{C})$. Since C is closed in X, \mathcal{K} is also discrete in X. By Lemma 2, X is almost expandable. Hence there is a point-finite collection $\{G_{\alpha} | \alpha \in A\}$ of open subsets of X such that $K_{\alpha} \subset G_{\alpha}$ for each $\alpha \in A$. Now, since each K_{α} is compact, we have a finite subcollection \mathcal{U}_{α} of \mathcal{U} covering K_{α} for each $\alpha \in A$. Then $\mathcal{CV} = \{G_{\alpha} \cap U | U \in \mathcal{U}_{\alpha}, \alpha \in A\}$ is a point-finite collection of open subsets of X. It is obvious that \mathcal{CV} covers $M(\mathcal{F}_{C})$ and refines \mathcal{U} .

Proof of Theorem 1. By Lemma 2, X is almost expandable, and hence, by [8], X is countably metacompact; i.e., every countable open cover of X has a point-finite open refinement. As is easily shown, a σ -point-finite open cover of a countably metacompact space has a pointfinite open refinement. So, to complete the proof, it suffices to prove that every open cover of X has a σ -point-finite open refinement; this will be achieved by the same argument as in [7].

Now, let \mathcal{U} be an open cover of X. By Lemma 5, we have a pointfinite collection \mathcal{U}_1 of open subsets of X such that \mathcal{U}_1 refines \mathcal{U} and $M(\mathcal{F}) \subset V_1$, where $V_1 = \bigcup \{V | V \in \mathcal{U}_1\}$. Let us put $C_1 = X - V_1$, then C_1 is a closed subset of X. Again, by Lemma 5, we have a point-finite col-

^{*)} Potoczny [7, Lemma 5] stated that the lemma holds in the case where X is collectionwise normal, but this restriction is not necessary; indeed the collectionwise normality of X was not used in his proof.

lection \mathcal{CV}_2 of open subsets of X such that \mathcal{CV}_2 refines \mathcal{U} and $M(\mathcal{F}_{C_1}) \subset V_2$, where $V_2 = \bigcup \{V | V \in \mathcal{CV}_2\}$. If we put $C_2 = X - (V_1 \cup V_2)$, then C_2 is a closed subset of X. Continuing these processes we obtain a sequence $\{\mathcal{CV}_n | n = 1, 2, \cdots\}$ of collections of open subsets of X such that each \mathcal{CV}_n is point-finite, each \mathcal{CV}_n refines \mathcal{U} , $M(\mathcal{F}) \subset V_1$ and $M(\mathcal{F}_{C_n}) \subset V_{n+1}$, where $V_n = \bigcup \{V | V \in \mathcal{CV}_n\}$ and $C_n = X - (V_1 \cup \cdots \cup V_n)$ for $n = 1, 2, \cdots$. By Lemma 4, the collection $\{V_n | n = 1, 2, \cdots\}$ covers X. Hence \mathcal{CV} $= \bigcup \{\mathcal{CV}_n | n = 1, 2, \cdots\}$ is a σ -point-finite open cover of X which refines \mathcal{U} . Thus the proof of Theorem 1 is completed.

Theorem 2. If a T_1 -space X has a σ -closure-preserving closed cover by compact subsets, then X is θ -refinable.

Proof. By assumption, X has a closed cover $\mathcal{F} = \bigcup \{\mathcal{F}_n | n=1, 2, \cdots\}$ each \mathcal{F}_n of which is a closure-preserving collection of compact subsets. Let us put $F_n = \bigcup \{F | F \in \mathcal{F}_n\}$ for $n=1, 2, \cdots$, then $\{F_n | n=1, 2, \cdots\}$ is a closed cover of X and each F_n is metacompact by Theorem 1. The union of countably many closed metacompact (more generally, θ refinable) subspaces is θ -refinable by [10, p. 824]. Hence X is θ refinable.

It is known that a θ -refinable, collectionwise normal space is paracompact ([10]). Hence, as a corollary to Theorem 2, we have the following result proved in [7].

Corollary. If a collectionwise normal T_1 -space X has a σ -closurepreserving closed cover by compact subsets, then X is paracompact.

References

- [1] Y. Katuta: On expandability. Proc. Japan Acad., 49, 452-455 (1973).
- [2] ——: Expandability and its generalizations (to appear in Fund. Math.).
- [3] E. Michael: Point-finite and locally finite coverings. Canad. J. Math., 7, 275-279 (1955).
- [4] —: Yet another note on paracompact spaces. Proc. Amer. Math. Soc., 10, 309-314 (1959).
- [5] K. Nagami: Paracompactness and strong screenability. Nagoya Math. J., 8, 83-88 (1955).
- [6] H. B. Potoczny: A nonparacompact space which admits a closure-preserving cover of compact sets. Proc. Amer. Math. Soc., 32, 309-311 (1972).
- [7] ——: Closure-preserving families of compact sets. General Topology and Appl., 3, 243-248 (1973).
- [8] J. C. Smith and L. L. Krajewski: Expandability and collectionwise normality. Trans. Amer. Math. Soc., 160, 437–451 (1971).
- [9] H. Tamano: A characterization of paracompactness. Fund. Math., 72, 189– 201 (1971).
- [10] J. M. Worrell, Jr. and H. H. Wicke: Characterizations of developable topological spaces. Canad. J. Math., 17, 820-830 (1965).