56. Note on Continuation of Real Analytic Solutions of Partial Differential Equations with Constant Coefficients^{*)}

By Akira KANEKO

College of General Education, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., April 12, 1975)

In [1], [2] and [3] we have given some results on continuation of real analytic solutions of linear partial differential equations with constant coefficients to convex sets K of various types. In this note we remark that the assumption of the convexity of K can be much weakened. This problem has been presented by Professor S. Ito. Also I am indebted to Professor H. Komatsu for the improvement of the result. I am very greteful for their valuable suggestions.

Theorem 1. Let K be a compact set in \mathbb{R}^n such that $\mathbb{R}^n \setminus K$ is connected. Let p(D) be a $t \times s$ matrix of linear partial differential operators with constant coefficients, and let p' be its transposed matrix. Assume that Hom (Coker p', \mathcal{P})=0 and that Ext^1 (Coker p', \mathcal{P}) has no elliptic components, where \mathcal{P} denotes the ring of polynomials. Then, for any open neighborhood U of K we have $A_p(U \setminus K) / A_p(U) = 0$, namely, every real analytic solution of p(D)u=0 can be uniquely continued to U.

Proof. Take $u \in A_p(U \setminus K)$. By the vanishing of the cohomology group $H^1(V, A)$ for any open set $V \subset \mathbb{R}^n$, we can take $f \in [A(\mathbb{R}^n \setminus K)]^s$ and $g \in [A(U)]^s$ such that

u=f-g on $U\setminus K$.

The assumption implies

 $0 = p(D)u = p(D)f - p(D)g \quad \text{on } U \setminus K.$

Hence p(D)f and p(D)g define an element h of $A_{p_1}(\mathbb{R}^n)$, where p_1 is the compatibility system of p. Let $V \supset K$ be a relatively compact convex open set. Then by the existence theorem (see, e.g., [5], Theorem 1) we can find $V \in [A(V)]^s$ such that p(D)v = h on V. Thus we have

$$|f-v|_{V\setminus \mathrm{ch}K} \in A_p(V\setminus \mathrm{ch}K),$$

where ch K denotes the convex hull of K. By Theorem 2.3 of [2], we obtain a unique continuation $[f-v] \in A_p(V)$ of $f-v|_{V \setminus chK}$. Since $\mathbb{R}^n \setminus K$ is connected, [f-v] agrees with f-v whenever both are defined. Therefore

$$[u] = [f - v] + v - g$$

^{*)} Partially supported by Fûjukai.

gives a real analytic continuation of u to the neighborhood $V \cap U$ of K. Considering the unique continuation property again, we have obtained the extension of u to $A_p(U)$. q.e.d.

We can give a more general result: The following is a real analytic version of the results of Komatsu [6], Theorem 4.1.

Theorem 2. Let K be a compact subset of \mathbb{R}^n . Then for any open neighborhood U of K we have $H^1_K(U, A_p) \cong A_p(U \setminus K) / A_p(U)$. Hence the latter quotient space does not depend on U.

Proof. We have the following long exact sequence in the general cohomology theory:

$$0 \longrightarrow A_p(U) \longrightarrow A_p(U \setminus K) \longrightarrow H^1_K(U, A_p) \longrightarrow H^1(U, A_p) \longrightarrow H^1(U \setminus K, A_p).$$

Thus it suffices to show that the restriction mapping $H^1(U, A_p) \to H^1(U \setminus K, A_p)$ is injective. Since the cohomology groups $H^k(V, A)$ vanish for $k \ge 1$ for any open subset $V \subset \mathbb{R}^n$, we can calculate $H^1(U, A_p)$ and $H^1(U \setminus K, A_p)$ employing the resolution

$$0 \longrightarrow A_p \longrightarrow A^s \xrightarrow{p} A^t \xrightarrow{p_1} A^{t_2} \longrightarrow \cdots$$

Thus we have

 $H^{1}(U, A_{p}) \cong A_{p_{1}}(U)/p(D)[A(U)]^{s}.$ $H^{1}(U \setminus K, A_{p}) \cong A_{p_{1}}(U \setminus K)/p(D)[A(U \setminus K)]^{s}.$

Take a representative $u(x) \in A_{p_1}(U)$ of an element of $H^1(U, A_p)$ which goes to zero cohomology class by the restriction. This obviously implies that $u|_{U\setminus K} = p(D)v$ for some $v \in [A(U\setminus K)]^s$.

Now we consider v as a section of $\tilde{\mathcal{O}}^s$ on $U \setminus K$, where $\tilde{\mathcal{O}}$ denotes the sheaf of slowly increasing holomorphic functions on $D^n \times i\mathbb{R}^n$; D^n is the directional compactification of \mathbb{R}^n and $\tilde{\mathcal{O}} \mid_{\mathbb{R}^n}$ agrees with A (see [4]). We have $H^1(V, \tilde{\mathcal{O}}) = 0$ for any open set $V \subset D^n$ ([4], Theorem 3.1.8). Thus we can find $f \in [\tilde{\mathcal{O}}(D^n \setminus K)]^s$ and $g \in [A(U)]^s$ such that v = f - g on $U \setminus K$. We have

$$p(D)f = p(D)v + p(D)g = u + p(D)g$$
 on $U \setminus K$.

Hence p(D)f can be extended analytically to K. The extended element h obviously satisfies $p_1(D)h=0$, and belongs to $[\tilde{\mathcal{O}}(D)]^s$. The latter implies especially that h is holomorphic on a complex strip around \mathbb{R}^n with a fixed breadth. Thus by the above quoted existence theorem ([5], Theorem 1) we can find $w \in [A(\mathbb{R}^n)]^s$ such that p(D)w=h. Thus we conclude that u=p(D)(w-g) with $w-g \in [A(U)]^s$. This implies that u represents the zero cohomology class also in $H^1(U, A_p)$. The injectivity is proved. Due to the excision theorem $H^1_K(U, A_p)$ does not depend on U.

Finally we give a similar result for the situation in [3]. Since the sufficient conditions given there are complicated, we do not repeat them here.

No. 4]

A. KANEKO

Theorem 3. Let K be the intersection of a compact set with the lower half space $\{x_n < 0\}$. Assume that every irreducible component p_{λ} of a single linear partial differential operator p(D) with constant coefficients satisfies one of the following conditions:

1) $\{x_n < 0\} \setminus K$ is connected and p_λ satisfies the condition of Theorem 2.6 in [3].

2) K and p_{λ} satisfy the condition of Theorem 2.7, 2) in [3]. (This time $\{x_n < 0\} \setminus K$ is necessarily connected.)

3) $\{x_n < 0\} \setminus K$ is connected and p_{λ} satisfies the condition of Theorem 2.12 in [3].

Then we have $A_p(U \setminus K) / A_p(U) = 0$.

The proof is similar. Though the application of the existence theorem diminishes the domain of analyticity to $\{x_n < -\delta\}$, we have no difficulty because δ is arbitrary and the solution is a fixed one.

References

- A. Kaneko: On continuation of regular solutions of partial differential equations to compact convex sets. J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, 567-580 (1970).
- [2] ——: The same title. II. Ibid., 18, 415–433 (1972).
- [3] ——: On continuation of regular solutions of partial differential equations with constant coefficients. J. Math. Soc. Japan, 26, 92-123 (1974).
- [4] T. Kawai: On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients. J. Fac. Sci. Univ. Tokyo, Sec. IA, 17, 467-517 (1970).
- [5] H. Komatsu: Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients. Math. Annalen, 176, 77-86 (1968).
- [6] ——: Relative cohomology of sheaves of solutions of differential equations. Séminaire Lions-Schwartz, 1966/7. Reprinted in Lecture Notes in Mathematics, 287, pp. 192-261. Springer (1973).