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In [1], [2] and [3] we have given some results on continuation of
real analytic solutions of linear partial differential equations with con-
stant coefficients to convex sets K of various types. In this note we
remark that the assumption of the convexity of K can be much
weakened. This problem has been presented by Professor S. Ito. Also
I am indebted to Professor H. Komatsu for the improvement of the
result. I am very greteful for their valuable suggestions.

Theorem 1. Let K be a compact set in Rn such that Rn\K is con-
nected. Let p(D) be a t s matrix of linear partial differential opera-
tors with constant coefficients, and let p’ be its $ransposed matrix. As-
sume ha Hom (Coker p’, )--0 and ha$ Ext (Coker p’, ) has no
elliptic components, where denotes the ring of polynomials. Then,
for any open neighborhood U of K we have A(U\K)/A(U)--O, namely,
every real analytic solution of p(D)u--O can be uniquely continued to
U.

Proof. Take u e A(U\K). By the vanishing of the cohomology
group H(V, A) for any open set VR, we can take f e [A(R\K)] and
g e [A(U)] such that

u--f -g on U\K.
The assumption implies

O= p(D)u--p(D)f--p(D)g on U\K.
Hence p(D)f and p(D)g define an element h of A,(R), where p is the
compatibility system of p. Let VK be a relatively compact convex
open set. Then by the existence theorem (see, e.g., [5], Theorem 1) we
can find V e [A(V)] such that p(D)v--h on V. Thus we have

f-- v Iv\ohr e A(V\ch K),
where ch K denotes the convex hull of K. By Theorem 2.3 of [2], we
obtain a unique continuation [f--v] e A(V) of f--v [r\r. Since R\K
is connected, [f--v] agrees with f--v whenever both are defined.
Therefore

[u] [f-- v] + v-- g

Partially supported by Ffijukai.
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gives a real analytic continuation of u to the neighborhood V gl U of K.
Considering the unique continuation property again, we have obtained
the extension of u to A(U). q.e.d.

We can give a more general result: The following is a real analytic
version of the results of Komatsu [6], Theorem 4.1.

Theorem 2. Let K be a compac$ subset of R. Then for any
open neighborhood U of K we have H(U, A)-A(U\K)/A(U). Hence
the latter quotien$ space does not depend on U.

Proof. We have the following long exact sequence in the general
cohomology theory:

0 ;A(U) >A(U\K) ;H(U, A)
>H(U, A)---H(U\K, A).

Thus it suffices to show that the restriction mapping H(U,A)
--H(U\K,A) is injective. Since the cohomology groups H(V,A)
vanish for/> 1 for any open subset VR, we can calculate H(U, A)
and H(U\K, A) employing the resolution

PA P0 >A,, >A :>A:- >....

Thus we have
H(U, A)’A(U)/p(D)[A(U)].

H(U\K, A)-A,(U\K)/p(D)[A(U\K)].
Take a representative u(x)e A,(U) of an element of H(U, A) which
goes to zero cohomology class by the restriction. This obviously im-
plies that u Iv\--p(D)v for some v [A(U\K)].

Now we consider v as a section of on U\K, where denotes
the sheaf of slowly increasing holomorphic functions on D iR D is
the directional compactification of R and I agrees with A (see [4]).
We have H(V, )--0 for any open set VD ([4], Theorem 3.1.8). Thus
we can find f e [(D\K)] and g e [A(U)] such that v--f--g on U\K.
We have

p(D)f--p(D)v-p(D)g=u-p(D)g on U\K.
Hence p(D)f can be extended analytically to K. The extended element
h obviously satisfies p(D)h--O, and belongs to [(D)]. The latter im-
plies especially that h is holomorphic on a complex strip around R
with a fixed breadth. Thus by the above quoted existence theorem
([5], Theorem 1) we can find w e [A(R)] such that p(D)w--h. Thus
we conclude that u--p(D)(w--g) with w--g e [A(U)]. This implies that
u represents the zero cohomology class also in H(U,A). The in-
jectivity is proved. Due to the excision theorem H(U, A) does not
depend on U. q.e.d.

Finally we give a similar result for the situation in [3]. Since the
sufficient conditions given there are complicated, we do not repeat
them here.
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Theorem 3. Let K be the intersection of a compact set with the
lower half space {x0}. Assume that every irreducible component
p of a single linear partial differential operator p(D) with constant
coeffcients satisfies one of the following conditions:

1) (xn 0}\K is connected and p satisfies the condition, of Theorem
2.6 in [3].

2) K and p satisfy the condition of Theorem 2.7, 2) in [3]. (This
time {xn 0}\K is necessarily connected.)

3) (x0}\K is connected and p satisfies the condition of Theorem
2.12 in [3].

Then we have A(U\K)/A(U)=O.
The proof is similar. Though the application of the existence

theorem diminishes the domain of analyticity to {x--}, we have
no difficulty because/t is arbitrary and the solution is a fixed one.
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