47. Local Theory of Fuchsian Systems. I

By Masaaki Yoshida and Kyoichi Takano
Kobe University

(Comm. by Kunihiko Kodaira, m. J. A., April 12, 1975)

1. Introduction. In this paper, we consider a completely integrable system

$$
\begin{equation*}
d X=\left(\sum_{i=1}^{n} \frac{P_{i}(x)}{x_{i}} d x_{i}\right) X \tag{1}
\end{equation*}
$$

where $P_{i}(x), i=1, \cdots, n$ is an $m \times m$ matrix holomorphic at $x=0$, say

$$
\begin{equation*}
P_{i}(x)=\sum_{k<0} P_{i, k} x^{k} . \tag{2}
\end{equation*}
$$

Here k denotes a multi-index $\left(k_{1}, \cdots, k_{n}\right), k_{i}$ a nonnegative integer, 0 $=(0, \cdots, 0)$, and $x^{k}=x_{1}^{k_{1}}, \cdots, x_{n}^{k_{n}}$. For two multi-indices k and l, " $k \geq l$ " means " $k_{i} \geq l_{i}$ for all i " and " $k>l$ " means " $k \geq l$ and $k_{i}>l_{i}$ for some i ". We propose to find out the dominant coefficients in $\left\{P_{i, k}\right\}$ which determine the local behavior of the solution of (1).

A change of variables $X=U(x) Y$ with $U(x)$ invertible holomorphic at $x=0$, transforms (1) into the system of the form

$$
\begin{equation*}
d Y=\left(\sum_{i=1}^{n} \frac{Q_{i}(x)}{x_{i}} d x_{i}\right) Y \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{Q_{i}(x)}{x_{i}} d x_{i}=U(x)^{-1}\left(\sum_{i=1}^{n} \frac{P_{i}(x)}{x_{i}} d x_{i}\right) U(x)-U(x)^{-1} d U(x) . \tag{4}
\end{equation*}
$$

First, we determine $U(x)$ in such a way that (3) has a 'reduced' form, of which the definition is given in Section 4 . Next, we show that by a suitable substitution $Y=x_{1}^{L_{1}} \cdots x_{n}^{L_{n}} Z$ with $L_{i}=\operatorname{diag}\left(l_{i}^{1}, \cdots, l_{i}^{m}\right)$, where l_{i}^{α} is a nonnegative integer, equation (3), which has a 'reduced' form, can be changed to the equation $d Z=\left(\sum_{i=1}^{n}\left(B_{i} / x_{i}\right) d x_{i}\right) Z$ with constant matrices B_{1}, \cdots, B_{n}.

When preparing this note, we were communicated from T. Kimura, that R. Gérard was solving a problem analogous to ours.
2. Convergence theorem. We prepare a convergence theorem which will be used later.

Theorem 1. Let

$$
\begin{equation*}
d u=\left(\sum_{i=1}^{n} \frac{F_{i}(x)}{x_{i}} d x_{i}\right) u \tag{5}
\end{equation*}
$$

be a completely integrable system, where u is a vector and

$$
F_{i}(x)=\sum_{k \geq 0} F_{i, k} x^{k}, \quad i=1,2, \cdots, n
$$

are matrices convergent and holomorphic for $|x|<\varepsilon$. Then any formal
power series solution of (5) converges for $|x|<\varepsilon$ and represents a holomorphic solution of (5).
3. Integrability condition. The integrability condition of a system (1) is equivalent to (6$)_{i, f: k}$

$$
k_{j} P_{i, k}-k_{i} P_{j, k}+\sum_{k^{\prime}+k^{\prime \prime}=k}\left[P_{i, k^{\prime}}, P_{j, k^{\prime \prime}}\right]=0
$$

for any $i, j=1, \cdots, n$ and $k=\left(k_{1}, \cdots, k_{n}\right)$. Here [,] denotes the usual bracket of matrices.
4. Reduction to a reduced form. Definition. We say the equation $d X=\left(\sum_{i=1}^{n}\left(P_{i}(x) / x_{i}\right) d x_{i}\right) X$ is 'reduced' with respect to $(k,(\alpha, \beta))$ if $a_{i}^{\alpha \alpha}-a_{i}^{\beta \beta}-k_{i} \neq 0$ for some i implies $p_{j, k}^{\alpha \beta}=0$ for all $j=1,2, \cdots, n$, where $k=\left(k_{1}, \cdots, k_{n}\right), P_{i}(x)=\sum_{k \geq 0} P_{i, k} x^{k}, P_{i, k}=\left(P_{i, k}^{\alpha \beta}\right)$ and $P_{i, 0}=\left(\alpha_{i}^{\alpha \beta}\right)$. Furthermore we say the equation has a 'reduced' form if it is reduced with respect to all $(k,(\alpha, \beta))$.

First we shall determine the coefficient U_{k} of $U(x)=\sum_{k \geq 0} U_{k} x^{k}$ such that the transformed equation has a 'reduced' form.
4.1. Formal reduction. We decompose $U(x)=\sum_{k \geq 0} U_{k} x^{k}$ as follows;

$$
U(x)=U_{0} \cdot U_{1}(x) \cdots U_{N}(x) \cdots
$$

where U_{0} is a nonsingular constant matrix and

$$
\begin{aligned}
U_{N}(x)= & U_{N}^{(1, m)}(x) \cdot U_{N}^{(2, m)}(x) \cdots U_{N}^{(m, m)}(x) \cdot U_{N}^{(1, m-1)}(x) \\
& \times U_{N}^{(2, m-1)}(x) \cdots U_{N}^{(1,1)}(x) \cdot U_{N}^{(2,1)}(x) \cdots U_{N}^{(m, 1)}(x)
\end{aligned}
$$

with

$$
U_{N}^{(\alpha, \beta)}=I+\sum_{|k|=N} U_{k}^{(\alpha, \beta)} x^{k}
$$

Here $|k|=\sum_{i=1}^{n} k_{i}$ and $U_{k}^{(\alpha, \beta)}$ is a constant matrix, of which the (γ, δ) component is zero except for $(\gamma, \delta)=(\alpha, \beta)$: the (α, β) component will be denoted by $u_{k}^{\alpha \beta}$. We determine $U_{0}, U_{1}^{(1, m)}(x), U_{1}^{(2, m)}(x), \cdots U_{N}^{(\alpha, \beta)}(x), \cdots$ successively.

Since $P_{i, 0}$ of $P_{i}(x)$ in (2) is mutually commutative by the integrability condition (6) i,j:0 , we can choose a nonsingular matrix U_{0} such that
\{(i) $\quad A_{i}=U_{0}^{-1} P_{i, 0} U_{0}, i=1, \cdots, n$ is lower triangular,
(ii) if $a_{i}^{\alpha \alpha}-a_{i}^{\beta \beta} \neq 0$ for some i, then $a_{j}^{\alpha \beta}=0$ for all $j=1, \cdots, n$, where $A_{i}=\left(\alpha_{i}^{\alpha \beta}\right)$. We note that the transformed equation by U_{0} is 'reduced' with respect to $(0,(\alpha, \beta))$ for all α, β. Furthermore, using the notation $(\gamma, \delta)<(\alpha, \beta)$ for $\delta>\beta$ or $\delta=\beta, \gamma<\alpha$, we have

Proposition 1 (Induction process). Assume that the completely integral system $d X=\left(\sum_{i=1}^{n}\left(P_{i}^{(x)} / x_{i}\right) d x_{i}\right) X, P_{i}(x)=\sum_{k \geq 0} P_{i, k} x^{k}$, is 'reduced' with respect to $(k,(\gamma, \delta))$ both for the cases when $k(|k|<N)$ and (γ, δ) is arbitrary and when $k(|k|=N),(\gamma, \delta)<(\alpha, \beta)$. Assume further $P_{i, 0}=A_{i}$ $=\left(\alpha_{i}^{\alpha \beta}\right)$ satisfies the condition (7). Then we can choose a transformation $=U_{N}^{(\alpha, \beta)}(x) Y$ such that a consequent equation $d Y=\left(\sum_{i=1}^{n}\left(Q_{i}(x) / x_{i}\right) d x_{i}\right) Y$, $Q_{i}(x)=\sum_{k \geq 0} Q_{i, k} x^{k}$, is 'reduced' with respect to ($k,(\gamma, \delta)$) both for the
cases when $k(|k|<N)$ and (γ, δ) is arbitrary and when $k(|K|=N),(\gamma, \delta)$ $\leq(\alpha, \beta)$. Furthermore

$$
Q_{i, k}=P_{i, k} \quad \text { for } k(|k|<N) i=1,2, \cdots, n,
$$

(9) $\quad q_{i, k}^{i \delta}=P_{i, k}^{r_{i}^{\delta}} \quad$ for $k(|k|=N),(r, \delta)<(\alpha, \beta)$.

If $\alpha_{i_{0}}^{\alpha \alpha}-a_{i_{0}}^{\beta \beta}-k_{i_{0}} \neq 0$ for some i_{0}, then the value of $u_{k}^{\alpha \beta}(|k|=N)$ is determined by
(10)

$$
\left(a_{i_{0}}^{\alpha \alpha}-a_{i_{0}}^{\beta \beta}-k_{i_{0}}\right) u_{k}^{\alpha \beta}+P_{i_{0}, k}^{\alpha \beta}=0 .
$$

Apply the above proposition to determine $U_{N}^{(\alpha, \beta)}(x)$, by regarding the equation for X in the proposition as the equation transformed from (1) by $U_{0} \cdot U_{1}^{(1, m)} \cdots U_{N}^{(a-1, \beta)}(x)$. Then

Theorem 2. There exists a formal power series $\sum_{k \geq 0} U_{k} x^{k}$ with $\operatorname{det} U_{0} \neq 0$, such that the formal substitution $X=\left(\sum_{k \geq 0} U_{k} x^{k}\right) Y$ changes the system (1) into the system which has a 'reduced' form.

Remark 1. Although $\sum_{k \geq 0} U_{k} x^{k}$ in Theorem 2 is not uniquely determined, it contains only finite number of undetermined parameters.

Remark 2. In Theorem 2, if no two eigenvalues of $P_{i, 0}$ differ by an integer for each i, we can choose $\sum_{k \geq 0} U_{k} x^{k}$ with $U_{0}=I$ such that, by $X=\left(\sum_{k \geq 0} U_{\dot{k}} x^{k}\right) Y$, (1) is changed to the equation of the form $d Y$ $=\left(\sum_{i=1}^{n}\left(P_{i, 0} / x_{i}\right) d x_{i}\right) Y$. In this case, $U_{k}(k>0)$ is uniquely determined.
4.2. Analytic reduction. By Theorem 1, we can prove the convergence of $U(x)=\sum_{k \geq 0} U_{k} x^{k}$ in Theorem 2. Thus

Theorem 3. Given any completely integrable system (1), we have a convergent series $U(x)=\sum_{k \geq 0} U_{k} x^{k}$ with $\operatorname{det} U_{0} \neq 0$ such that the transformation $X=U(x) Y$ takes (1) into

$$
\begin{equation*}
d y=\sum_{i=1}^{n}\left(\frac{Q_{i}(x)}{x_{i}} d x_{i}\right) Y \tag{11}
\end{equation*}
$$

where
(i) $Q_{i}(x)=A_{i}+\sum_{k>0} Q_{i, k} x^{k}$ (finite sum), A_{i} being lower triangular,
(ii) the (α, β) component $q_{i}^{\alpha \beta}(x)$ of $Q_{i}(x)$ is a monomial of x,

$$
q_{i}^{\alpha \beta}(x)=q_{i}^{\alpha \beta} \cdot x_{1}^{k_{1}} \cdots x_{n}^{k_{n}},
$$

with $k_{\mu}=a_{\mu}^{\alpha \alpha}-a_{\mu}^{\beta \beta}, \mu=1, \cdots, n$. $q_{i}^{\alpha \beta}(x)$ can be nonzero only if $a_{\mu}^{\alpha \alpha}-a_{\mu}^{\beta \beta}$ is a nonnegative integer k_{μ} for all $\mu=1,2, \cdots, n$.
5. Singular transformation. Consider the 'reduced' equation (11) in Theorem 3. Let L_{i} be a diagonal matrix (l_{i}^{α}). A singular transformation $Y=x_{1}^{L_{1}} \cdots x_{n}^{L_{n}} Z$ changes (11) into $d Z=\left(\sum_{i=1}^{n}\left(B_{i}(x) / x_{i}\right) d x_{i}\right) Z$, where $b_{i}^{\alpha \beta}(x)=q_{i}^{\alpha \beta}(x) x_{1}^{l^{\beta}-l_{1}^{\alpha}} \cdots x_{n}^{l_{n}^{\beta}-l_{n}^{\alpha}}-\delta_{\beta}^{\alpha} l_{i}^{\alpha}$. Here, $B_{i}(x)=\left(b_{i}^{\alpha \beta}(x)\right), Q_{i}(x)$ $=\left(q_{i}^{\alpha \beta}(x)\right)$ and δ_{β}^{α} denotes the Kronecker symbol.

We shall show that $b_{i}^{\alpha \beta}(x)$ becomes constant by choosing nonnegative integers l_{i}^{α} suitably. We classify $\left\{a_{i}^{\alpha \alpha}\right\}_{\alpha=1, \ldots, m}$ so that $a_{i}^{\alpha \alpha}$ and $a_{i}^{\beta \beta}$ belong to the same class iff $a_{i}^{\alpha \alpha}-a_{i}^{\beta \beta}$ is an integer. We denote by $\left[a_{i}^{\alpha \alpha}\right]$ the class of $a_{i}^{\alpha \alpha}$. For every $a_{i}^{\alpha \alpha}$, we define $a_{i}^{\alpha \alpha_{0}}$ as a member of $\left[a_{i}^{\alpha \alpha}\right]$ which has the minimum real part. Then by taking $l_{i}^{\alpha}=\alpha_{i}^{\alpha \alpha}-a_{i}^{\alpha \alpha_{0}}, b_{i}^{\alpha \beta}(x)$ becomes
a constant $b_{i}^{\alpha \beta}$ by virtue of the properties (i), (ii) in Theorem 3. Thus we have

Theorem 4. By a change of variables $Y=x_{1}^{L_{1}} \cdots x_{n}^{L_{n}} Z$ with L_{i} $=\operatorname{diag}\left(l_{i}^{1}, \cdots l_{i}^{m}\right)$, l_{i}^{α} nonnegative integer, the 'reduced' equation in Theorem 3 can be transformed to

$$
d Z=\left(\sum_{i=1}^{n} \frac{B_{i}}{x_{i}} d x_{i}\right) Z
$$

where B_{i} is a constant matrix given by

$$
B_{i}=A_{i}-L_{i}+\sum_{k>0} Q_{i, k} \quad(\text { finite sum })
$$

and satisfies $\left[B_{i}, B_{j}\right]=0, i, j=1, \cdots, n$.
Remark 3. L_{i} in Theorem 4 is not uniquely determined, but it is unique up to integers in the following sense: Let L_{i} and L_{i}^{\prime} be two diagonal matrices stated in Theorem 4, then $l_{i}^{\alpha}-l_{i}^{\prime \alpha}=l_{i}^{\beta}-l_{i}^{\prime \beta}$ for any α, β with $\left[\alpha_{i}^{\alpha \alpha}\right]=\left[a_{i}^{\beta \beta}\right]$.
6. Main Theorems. Combining Theorem 3 and Theorem 4, we have

Theorem 5. Given any completely integrable system (1) where $P_{i}(x)$ is holomorphic at $x=0$, we have a nonsingular matrix $U(x)$ holomorphic at $x=0$ and a diagonal matrix $L_{i}, i=1, \cdots, n$ of which the components are nonnegative integers such that the transformation X $=U(x) x_{1}^{L_{1}} \cdots x_{n}^{L_{n} Z}$ changes (1) into

$$
d Z=\left(\sum_{i=1}^{n} \frac{B_{i}}{x_{i}} d x_{i}\right) Z
$$

where $B_{i}, i=1, \cdots, n$ is a constant matrix satisfying $\left[B_{i}, B_{j}\right]=0$ for all $i, j=1, \cdots, n$. The matrices B_{i}, L_{i} and the coefficients of the power series for $U(x)$ can be concretely calculated by algebraic operations. And the eigenvalues of $B_{i}+L_{i}$ coincide with those of $P_{i}(0)$.

By the same argument as in the proof of Theorem 5, we can obtain
Theorem 6. Given a completely integrable system

$$
\begin{equation*}
d X=\left(\sum_{i=1}^{\nu} \frac{P_{i}(x)}{x_{i}} d x_{i}+\sum_{i=\nu+1}^{n} P_{i}(x) d x_{i}\right) X, \tag{12}
\end{equation*}
$$

where $P_{i}(x), i=1, \cdots, n$ is an $m \times m$ matrix holomorphic at $x=0$, we have a transformation $X=U(x) x_{1}^{L_{1}} \ldots x_{\nu}^{L_{\nu}} Z$ which changes (12) to $d Z$ $=\left(\sum_{i=1}^{v}\left(B_{i} / x_{i}\right) d x_{i}\right) Z$ where $U(x), L_{i}$ and $B_{i}, i=1, \cdots, \nu$ satisfy the same condition as in Theorem 5. Furthermore,

The details will be published elsewhere.

References

[1] P. Deligne: Equations différentielles à points réguliers singuliers. Lec. Notes in Math., 163. Springer (1970).
[2] F. R. Gantmacher: The Theory of Matrices, Vol. I. Chelsea Publishing Company, New York (1964).
[3] R. Gérard: Théorie de Fuchs sur une variété analytique complexe. J. Math. pures et appl., 47, 321-404 (1968).
[4] W. Wasow: Asymptotic Expansions for Ordinary Differential Equations. Interscience Publishers (1965).

