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1. Introduction and notation. We consider the Yukawa-coupled
Klein-Gordon-Schrédinger equations in R*:

i""—"";t’—“)—ww(t, ) =g (t, Dt 2),

(1) 2 TN
(A_%_ ;ﬂ)gs(t, ©) = gy(t, ©)V(E, 2),

which represent the classical model of dynamics of conserved complex
nucleon fields v interacting with neutral real scalar meson fields ¢.
The constant x describes mass of a meson and g a coupling real con-
stant.

In the case of one space dimension, the existence of global solutions
of the Cauchy problem has been established by the authors [3]. Inthe
case of relativistic fields, that is, when nucleons are governed by the
Dirac spinor fields, we must treat the coupled Klein-Gordon-Dirac

equations:
b 0 ) - (a =_a_>
(m ow, )= Ve oz, ot /)
i -
A=T it )s=gu,
( P p=gv¥

which were investigated by Chadam and Glassey [1], [2].

In this paper, our purpose is to state the existence and uniqueness
theorems for global solutions of the initial-boundary value problem
for the system (1) in 2 with boundary conditions:

(2) ¥v(t, ) =¢(t, 2)=0 for xedf and ¢>0

and initial conditions:

(3) (0, x)=14(), (0, x) =d(x) and ¢,0,x)=¢(x) forzxze,
where 2 denotes a bounded domain in R® with sufficiently smooth bound-
ary o8.

In section 2, we refer to the global existence theorem of the initial-
boundary value problem (1)-(3), and the main tool for proving them.
In section 3, we represent the uniqueness result. In section 4, we
investigate the regularity properties of solutions of (1)-(3).

In this note, we state the results only. Detailed proofs will be
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published elsewhere.
Notations. Let L*2) be the complex or real space of square
integrable functions with inner product and norm:

(4, v)= J u@e@de,  ul=(, 0",

H™(2) (m(>=1): integer) denote the complex or real Sobolev spaces
equipped with inner product and norm:

U, V=2 1¢m J.a Diw(x)Div(x)de, (| %] = (o, w32

Let Cy(£2) denote the set of all infinitely differentiable complex-valued
or real-valued functions with compact support in 2. The spaces H(2)
are the closure of C3(2) in the strong topology of H™(2). Since Q2 is
bounded, in the space Hy(2) || - ||, is equivalent to ||/ - ||. Therefore, V-,V -)
is employed as the inner product of Hi(£2) and we denote it by ((-, -)).
For a Hilbert space X, L=(0,T:X) denotes the space of measurable
functions on [0, T'] with values in X and C*(0, T : X) denotes the space of
k-times continuously differentiable functions on [0, T'] with values in X.

2. Global existence. Suppose that [y, #] are smooth solutions of
(1)-(3), the following energy identities are valid:

(4) @ IP=[v |
1 2 1 2 liz 2
Lirsrie+ Liscor+ £ 19

(5) HIPVO I+ [ 14, DF 6t 2)da
_1 oy 1 ey M 2 2 2
= 2P+ Sl + LGl +IPbl+9 [ H@)F gu@da.

In virtue of this energy identities, we can establish the global
existence theorem of weak solutions of (1)-(3) by using the Galerkin’s
method and compactness arguments. Moreover, from a priori estimates
for higher order derivatives, we can show the existence theorem of
strong solutions of (1)-(3). The following theorems are obtained.

Theorem 1 (existence of weak solutions). Suppose that , ¢ H)(Q),
& € Hy(2) and ¢, € L*(22). Then there exists at least a couple of weak
solutions [V, ¢l of (- satisfying: veL=0, T: H(D), ¢

e L~(0, T: Hi(9)) with ¢, e L=(0, T : LX(2)) and the integral identities:

(6) I: [—i(y (@), T @) — ((v(®), T (@) — g(w()p(2), T(E))1dt

=1(v(0), 7(0))
for any complex function ¥ e C*(0, T : LA(2)) N C*0, T : H(RQ)) such that
?F(T') =0’

(7) I: [($(2), DEN) — ($(8), Do(B)) + p2($(2), D)) + g(Y(E) ¥ (F), D(E))]de
= (¢c(0)a Q,(O))
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for any real function @ ¢ CY0, T : LA(2)) N C°(0, T : HY(2)) such that &(T)
=0.

Theorem 2 (existence of strong solutions). If v, e H(2) N HQ),
@ € Hi(Q) NH Q) and ¢, € Hi(2), then there exists a couple of strong
solutions [, ¢] of (1)—(3) such that:

Yve L=, T: H{(QNHY) with +,€ L=, T: LX),
$e L=(0,T: H(QDNH Q) with ¢, L0, T: H(Q)) and
b € L0, T': L*(9)).

3. Uniqueness. Theorem 3 (uniqueness of strong solutions).
A couple of strong solutions [V, @] of the problem (1)-(3) is uniquely
determined by the initial conditions.

Remark 1. In the case of one space dimension, the uniqueness
theorem of weak solutions in the sense of the class mentioned in
Theorem 1 is obtained in [3]. However, in the case of three space
dimensions, the problem whether the weak solution is uniquely deter-
mined by the initial conditions or not is still open.

4. Regularity. Let [V, ¢] be smooth solutions of (1)-(3). Then
the following identity is valid:

2 g7 (7 D)+ Dy 6(8) [P+ 12 | Dyg(8) |2+ 2 | PO !

+2035244C; | (Dpwtt, YD DD (e, a))da
+205355:C, | D3y, DIIE DI 42, a)da
+2035254C; [ (D19t ®)DIITE 9)Dig(t, 2))da)
(8) =952 0G| | (D98, DEE BDIg(E, @) da
+ 97 naCy [ (DIt D= HTE DD2g(E, )i
+ 9557 0y | DRt )DITTE DD (8, )

+ gnCn—l 2 D?\ﬁ‘(t, .’I/')D{l!f(t, x)D?¢(t’ x)dx

+ 9uCoy j  Dit, DD DD g, w)da

4 0uCoy j Doit, YD, DDt @) de.

From this identity, we obtain inductively desired a priori estimates
for higher order derivatives of solutions after a long calculation. Thus,
using the projection method of the Galerkin’s type with a special
system of bases, we have:

Theorem 4. Suppose ,e Hy(Q)NH™ (D), ¢ e HyD)NH™ Q)
and ¢, € Hy(Q) N H==-59(Q) (n(>3): integer). Then, the solutions
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[V, ¢1 of (1)—~(3) have the following properties:
Div e L=(0,T: H(Q)NH"%(Q)  (=0,1,2,...,n—1),
Di¢e L=(0, T: H(Q2) NH"~(2)) 4=0,1,2,...,n—1),
Dig e L0, T : LX(£)).

Corollary. If v, ¢, and ¢, belong to C=(2) N HY(Q), then the solu-
tions [V, ¢1 of (1)—(8) are infinitely differentiadble on [0, T]1X 2.

Remark 2. In the case of the Cauchy problem for the coupled
Klein-Gordon-Schrodinger equations in three space dimensions, it
seems difficult to obtain the same result as Theorem 4 by the Galerkin’s
method. However, the desired results are obtained if we employ the
other method.
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