115. On almost Primes in Arithmetic Progressions. II

By Yoichi Motohashi
Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., Sept. 12, 1975)

§ 1. Let P_{r} denote as usual a number which has at most r prime factors counting multiplicities. In our previous paper [2] we have proved that there are numbers such that

$$
\begin{array}{ll}
\mathrm{P}_{2} \ll k^{11 / 10}, & \mathrm{P}_{2} \equiv l(\bmod k), \\
\mathrm{P}_{3}<k(\log k)^{\tau 0}, & \mathrm{P}_{3} \equiv l(\bmod k),
\end{array}
$$

for almost all reduced residue classes $l(\bmod k)$. The purpose of the present note is to study briefly the dual problem in which the reduced residue class l is fixed and the modulus k runs over certain interval. We prove

Theorem. Let l be a fixed non-zero integer. Then there is a P_{3} such that

$$
\mathrm{P}_{3} \ll k(\log k)^{70}, \quad \mathrm{P}_{3} \equiv l(\bmod k),
$$

for almost all $k,(k, l)=1$.
Our proof depends on two recent results: one from [2] which concerns to a compact presentation of the sieve procedure of Jurkat and Richert, and the other from [1] which is a simple variant of the dispersion method of Linnik. These are embodied in lemmas of the next paragraph.

Notations. In what follows we always have $(k, l)=1$, and we may assume that l is a positive integer. x is a positive and sufficiently large parameter. $\varphi(n)$ denotes the Euler function, and d $(n), \mathrm{d}_{5}(n)$ are divisor functions. (n, m) and $[n, m]$ denote the greatest common divisor and the least common multiple between n and m, respectively.
§ 2. Let $z \geqq 2$ be arbitrary, and let

$$
\mathrm{P}_{k}(z)=\prod_{\substack{p \leq z \\ p \nmid k}} p, \quad \Gamma_{k}(z)=\prod_{\substack{p \leq z \\ p \nmid k}}\left(1-\frac{1}{p}\right),
$$

p being generally a prime number. We introduce another parameter w such that $z \leqq w$, and we put, for any non-negative constant ζ,

Also we write
(1)

$$
\mathrm{W}_{\xi}(x ; k, l ; z, w)=\mathrm{V}_{\xi}(x ; k, l ; z, w)-\mathrm{S}(x ; k, l ; z, w) .
$$

We define the functions f and F by the difference-differential equation

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} u}(u f(u))=F(u-1), \quad \frac{\mathrm{d}}{\mathrm{~d} u}(u F(u))=f(u-1), \quad u \geqq 2, \\
f(u)=0, \quad F(u)=2 e^{r} / u, \quad 0<u \leqq 2,
\end{gathered}
$$

where γ is the Euler constant, and we put, for any $1<u<v$,

$$
\Psi_{\zeta}(u, v)=f(v)-\zeta \int_{u}^{v} F\left(v\left(1-\frac{1}{t}\right)\right)\left(1-\frac{u}{t}\right) \frac{d t}{t}
$$

Then we have, by an easy modification of the argument of [2],
Lemma 1. Let R be a parameter with $\mathrm{R} \leqq x^{3 / 2}$, and let

$$
2 \leqq z \leqq w \leqq x / \sqrt{\mathbf{R}} .
$$

Then there are numbers $\Phi(m)=\Phi_{\zeta}(m ; x, z, w, R)$ such that

$$
\begin{equation*}
\mathrm{V}_{\zeta}(x ; k, l ; z, w) \geqq \sum_{\substack { n \equiv l \\
\begin{subarray}{c}{(n) l n d 1 \\
n \leq 1{ n \equiv l \\
\begin{subarray} { c } { (n) l n d 1 \\
n \leq 1 } }\end{subarray}}\left(\sum_{m \mid n} \Phi(m)\right) \tag{2}
\end{equation*}
$$

And these numbers have the properties:

$$
\begin{aligned}
& \Phi(m)=O\left(\mathrm{~d}_{5}(m)\right) \\
& \Phi(m)=0, \quad \text { for } m>x / \sqrt{\mathbf{R}} .
\end{aligned}
$$

Moreover we have

$$
\begin{gather*}
\sum_{(m, k l)=1} \frac{\Phi(m)}{m} \geqq \frac{\varphi(l)}{l} \Gamma_{k l}(z) \Psi_{\zeta}\left(\frac{\log x / \sqrt{\mathrm{R}}}{\log w}, \frac{\log x / \sqrt{\mathrm{R}}}{\log z}\right) \tag{3}\\
-O\left((\log x)^{-1 / 1 /}\right) .
\end{gather*}
$$

The next lemma is a slightly generalized presentation of a recent result of Hooley [1].

Lemma 2. Let $c(m)$ be any complex numbers, and let l be a positive integer. Then we have, uniformly for all involved parameters,

$$
\begin{aligned}
& \sum_{\substack{\mathrm{K} \leq k \leq 2 \mathrm{~K} \\
(k, l)=1}}\left|\sum_{\substack{n \equiv l(\bmod k) \\
(n, l)=1 \\
n \leq \infty}}\left(\sum_{\substack{m \mid n \\
m \leq \mathbb{M}}} c(m)\right)-\frac{\varphi(l)(x-l)}{l k} \sum_{\substack{(m, k l)=1 \\
m \leq \mathbb{M}}} \frac{c(m)}{m}\right|^{2} \\
&
\end{aligned} \ll\left(\frac{x}{\mathrm{~K}}\right)^{2}\left(\sum_{m \leq \mathbb{M}}|c(m)|\right)^{2}+x \log x \sum_{m_{1}, m_{2} \leq \mathbb{M}} \frac{\left|c\left(m_{1}\right) c\left(m_{2}\right)\right|}{\left[m_{1}, m_{2}\right]}\left(\mathrm{d}\left(m_{1}\right)+\mathrm{d}\left(m_{2}\right)\right) . .
$$

§3. We now show a brief proof of our theorem. We set in Lemma 1

$$
\begin{aligned}
& z=(x / \sqrt{\mathrm{R}})^{1 / 4}, \quad w=(x / \sqrt{\mathrm{R}})^{9 / 10} \\
& \frac{1}{\zeta}=4-\frac{10}{9}\left(\Lambda_{3}-\delta\right)
\end{aligned}
$$

where

$$
\Lambda_{3}=4-\frac{\log 27 / 7}{\log 3}
$$

and δ is an arbitrary small positive constant. Then we have, by [3],

$$
\begin{equation*}
\Psi_{\zeta}\left(\frac{\log x / \sqrt{\mathrm{R}}}{\log w}, \frac{\log x / \sqrt{\mathrm{R}}}{\log z}\right) \geqq \frac{\delta}{2} e^{r} \frac{\log 9}{\log 8} . \tag{4}
\end{equation*}
$$

On the other hand, writing $\mathrm{V}_{\xi}^{(1)}(x ; k)$ for the right side of (2), we get, from Lemma 2,

$$
\begin{aligned}
& \sum_{\substack{\mathrm{K} \leq k, 2 \mathrm{~K} \\
(k, l)=1}}\left|\mathrm{~V}_{\xi}^{(1)}(x ; k)-\frac{\varphi(l)(x-l)}{l k} \sum_{(m, k l)=1} \frac{\Phi(m)}{m}\right|^{2} \\
& \ll \frac{x^{4}}{\mathrm{~K}^{2} \mathrm{R}}(\log x)^{8}+x(\log x)^{98} .
\end{aligned}
$$

Hence, noticing (3) and (4), we have

$$
\begin{equation*}
\mathrm{V}_{\zeta}^{(1)}(x ; k)=\left(1+O\left((\log x)^{-1 / 2}\right)\right) \frac{\varphi(l)(x-l)}{l k} \sum_{(m, k l)=1} \frac{\Phi(m)}{m}, \tag{5}
\end{equation*}
$$

save for at most

$$
\ll \frac{x^{2}}{\mathrm{R}}(\log x)^{11}+\frac{\mathrm{K}^{2}}{x}(\log x)^{69}
$$

modulus k from the interval $[\mathrm{K}, 2 \mathrm{~K}$).
Also, again appealing to Lemma 2, we see easily

$$
\sum_{\substack{\mathrm{K} \leq(x, z 2 \mathrm{~K} \\(k, l)=1}}\{\mathrm{S}(x ; k, l ; z, w)\}^{2} \ll\left(\frac{x}{\mathrm{~K}}\right)^{2} w^{2}+\frac{x^{2}}{z \mathrm{~K}} .
$$

Thus we have

$$
\begin{equation*}
\mathrm{S}(x ; k, l ; z, w) \ll \frac{x}{\mathrm{~K}}(\log x)^{-2} \tag{6}
\end{equation*}
$$

save for at most

$$
\left(\left(\frac{x^{2}}{\mathrm{R}}+\frac{\mathrm{K}}{z}\right) \log ^{4} x\right)
$$

modulus k from the interval $[\mathrm{K}, 2 \mathrm{~K})$.
Finally we set

$$
\begin{aligned}
& \mathrm{R}=x(\log x)^{82}, \\
& \mathrm{~K}=x(\log x)^{-70} .
\end{aligned}
$$

Then we have, from (1) to (6), that, for sufficiently large x,

$$
\mathrm{W}_{\zeta}(x ; k, l ; z, w) \geqq \frac{\delta x}{3 k} \Gamma_{k}(z) e^{r}
$$

save for at most $\mathrm{K}(\log x)^{-1}$ modulus k from the interval $[\mathrm{K}, 2 \mathrm{~K})$. According to [3] this means that there is a P_{3} such that

$$
\begin{aligned}
& \mathrm{P}_{3} \leqq x \ll \mathrm{~K}(\log \mathrm{~K})^{70} \\
& \mathrm{P}_{3} \equiv l(\bmod k),
\end{aligned}
$$

for almost all k.

References

[1] C. Hooley: On the Brun-Titchmarch theorem. II. Proc. London Math. Soc., 30, 114-128 (1975).
[2] Y. Motohashi: On almost primes in arithmetic progressions (to appear in J. Math. Soc. Japan.).
[3] H. E. Richert: Selberg's sieve with weight. Mathematika, 16, 1-22 (1969).

