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1. Introduction. In this paper the notion of shape is understood
in the sense of Mardeid [2] and our approach to shape theory (cf. [5],
[6]) will be used.

Our approach enables us to define the k-th homotopy pro-group
{(X, x0)} of a pointed topological space (X, x0). The homotopy pro-
groups play the central role in the Whitehead theorem in shape theory.

Theorem 1.0 (Morita [6]). Let f (X, Xo)-.(Y, Yo) be a shape mor-
phism of pointed connected topological spaces. If the induced mor-
phism (f)" ((X, x0))-*{(Y, Y0)} of homotopy pro-groups is an iso-
morphism for l<=k<=n and an epimorphism for I--n+ l where n+ l
--max (1 / dim X, dim Y) c, then f is a shape equivalence.

In this paper, by using homotopy pro-groups we shall formulate
a Vietoris theorem in shape theory as follows.

Theorem 1.1. Let f" (X, Xo)-.(Y, Yo) be a closed continuous map
from a pointed metrizable space (X, Xo) onto a pointed topological space
(Y, Yo) such that f-l(y) is approximatively k-connected for every point
y of Y and for O<__k<=n. Then the induced morphism z(f)" z((X, x0)}
-u((Y, Y0)} of homotopy pro-groups is an isomorphism for l<=k<=n
and an epimorphism for k--n+ 1.

The following is a direct consequene of Theorems 1.0 and 1.1 as
far as X is connected or locally connected.

Theorem 1.2. Let f be the same as in Theorem 1.1. If, in addi-
tion, dim X<=n and dim Ygn/ 1, then f is a shape equivalence.

As is quoted in [3, p. 319], in the first version of [5] we defined the
k-th shape group _(X, x0) of a pointed topological space (X, x0)to be
the inverse limit of {(X, x0)}. For metric compacta M. Moszyfiska
[8] proved that the shape groups are naturally isomorphic to the funda-
mental groups in the sense of K. Borsuk. Thus, our Theorem 1.1
extends a result for metric compacta which was announced by S. Bogaty
[1] and proved by K. Kuperberg [9].

2. Preliminaries. Let X be a metrizable space. Then there is
a metric space X0 which is an ANR for metric spaces and contains X
as its closed subset. Let f" (X, Xo)-.(Y, Yo) be a closed continuous map
from (X, x0) onto a pointed topological space (Y, Y0). Then the collec-
tion (f-(Y) IY e Y} 0 {{x}]x e Xo--X} of subsets of X0 defines an upper
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semi-continuous decomposition of X0 and the decomposition space Y0.
Then the quotient map f0" X0--* Y0 is a closed continuous onto map such
that f--foIX and fi-(Y)--X, and Y0 is perfectly normal and paracom-
pact.

Let { I e A} be the set of all the collections of open subsets of Y0
satisfying the following conditions"
( 1 ) YH, where H----- U {VI V e },
( 2 ) is locally finite in Y0,
( 3 ) the correspondence V--*V Y for V e defines an isomorphism

from N() to N( Y),
( 4 ) only one member of contains Y0.
Here N means the operation of taking the nerve of a cover. For ,
/ e A let us define _</ by requiring that is a refinement of . Thus
_/ implies HH. Let K be N() and k0 the vertex of K corre-
sponding to the member of containing Y0 (cf. (4)), and let us put
G=f-I(H).

Then by [4, Lemma 1]" the set { f Y I e A} of covers of Y is co-
final in the set of all locally finite normal open covers .of Y with respect
to the order by refinement. On the other hand, since f0 is a closed
map, {GI2 e } is cofinal in the set of all open neighborhoods of X in

X0 with respect to the order by inclusion.
Therefore, the inverse system {(G, x0), i,, A} with the inclusion

maps i, as bonding maps induces an inverse system in 0 which is as-
sociated with (X, x0)(cf. [5, Theorem 1.4]) and {(K, k0), [,], A} is an
inverse system in 0 which is associated with (Y, Y0) (cf. [5, Theorem
1.3]), where 0 is the homotopy category of topological spaces having

the homotopy type of a CW complex and " (K,,, ko,)o(K, ko) for 2,

/ e A with _</ are canonical projections. Let " (H, yo)---.(K, ko) be
a canonical map for 2 e A such that (St(v K))= V. Then we have
the homotopy commutative diagram"

where the description of base-points is omitted and i, i,, i,, ], ], and
], are all inclusion maps.

1) This lemma remains valid even in case X is a countably paracompact,
collectionwise normal space.
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Letf "(G, x0)-(K, k0) be a map defined by f(x)=fo(X) or x e G.
Then {1, f, A} is a special system map rom the inverse system {(G, x0),
[i,], A} to the inverse system ((K, k0), [,], A} which represents a shape
morphism rom (X, x0) to (Y, Y0) induced by f.

:}. Proof of Theorem 1.1. Let f." (X, Xo)-o(Y, Yo) be the same as
in 2. Moreover, assume that f-(y) is pproximatively k-connected
or each point y of Y and or 0<: k=<n. Let us keep the notation in 2.
We shall say that a subset A of a space B is -trivially embedded in
B i every continuous map rom a k-sphere S to A is null homotopic
in B. Thus, a subset C of X0 is approximatively k-connected iff each
open neighborhood U of C embedds an open neighborhood V of C -trivially. For collections 1I and 8 of subsets of X0, we shall say that
1I refines 3 -trivially if each member of 1I is -trivially embedded in
some member of 8.

A partial realization of a polyhedron (--a simplicial complex with
the weak topology) P in f0-(3,) is a continuous map g" QXo of some
subpolyhedron QP containing the zero-skeleton p0 o P, such that
g(Q a) is contained in some f(V) with V e 3, or each closed simplex
a of P. The realization of P is called ull if Q-P. The ollowing
lemma is easy to see.

Lemma ).1. Let {20,,, ",2+} be a sequence of elements of A
-1such that f0-(St ()) refines f (+) r-trivially for O<=k<=n, where

St ()- {St (V, 3)1V e 3}. Then any partial realization of a poly-
hedron P, with dim P<__n+ 1, in f0-(St (3o)) can be extended to a full

-1realization of P in f (3/,).
We write 2-/ is case there is a sequence {0, 2, ", 2/} in A satis-

fying the condition o Lemma 3.1 such that 8/ is a star-refinement
of 3 and

Lemma 3.2. For any e A there is some [ e A with -4.[.
Lemma ).:. For any , [ e A with -<[ there is a continuous map

g. .--,(K+, ko.)-(G, Xo) such that fg.. --.’(n+l. (KS+, k0.)-(K, k0).
Proof. To each vertex v., of K. let us assign a point g0(v.,)

e f((V.,) and define a map go K.-Xo. Here we denote by v., the
vertex of K. corresponding to the member V., of !8.. Let v.,,, i=0,
1, ., r, be vertices of a simplex a of K.. Then g0(a
<i<r}St (f((V.,o),f(!8.))St (f(Vo,.o),f(8o)). Hence go is a
partial realization of K. in fo-(St (!8o)). By Lemma 3.1 go is extended
to a partial realization g+l" K/Xo in f-(3+,).

Let v,., i=0, 1, ..., r, be vertices of a simplex a in K, with r__<n
+ 1. Suppose that
(6) f(V.o)f(V+.o) with V,,+,, e
(7) g+(a*)cfc(V.+,,) with V.+,,. e +,.
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Since g+(v,,0) f((V.+,,.0), we have gn+l(a) St(f0-1(V+,,.0),
f-l(!+ 1)). Hence gn+(St(v,o K+))St(f;(V+,o),f((.+)).

Suppose that St (fu(V.+,,.o), f;(.+,)cf;(V,r) with V,r e .
Then we have

fg+(St (v,0 K+)) St (v,, K),
and V.,0 V,r. Thus, if we put g=g+ and define a map ." KK
by .(v,0)=v,,’ then . is a canonical projection and
K is a simplicial approximation of fg.. Hence we have fg.. ]KS+" (K. ko.)(K, ko).

Lemma 3.4. Suppose that p. Then any continuous map

from (S, So) to (G., Xo) such that f." (S, So)(K., ko.) is null homotopic
is null homotopic in (G, Xo) for k n.

Proof. Suppose that S is the boundary of I+ where I=[0, 1].
Then the map f. is extended to a continuous map " I+K.. Let P
be a simplicial subdivision of I+ such that for a closed simplex a in
P (a) is contained in St(v ;K.) with some vertex v of K. and such that
a subcomplex Q of P is a subdivision of S. For p e Q let us put (p)
=(p) and for a vertex w of P-Q let (w) be a point of f(V,)
Z(w) eSt(v.,;K.). I r is a closed simplex of Q and
c St(v., K.), then (r)=(r) e f(St (v., K.))cf(V.,).

Let a be a closed simplex of P such that r=a Q and w#, 0]m
are vertices of a lying not in Q. Then there is a vertex v.,. o K. such
that Z(a)cSt(v.,.;K.). Supposethat Z(w)cSt(v.,.,;K.) for Oim.
Then V.,., V.,.O, V., V.,.O. Hence(a(QUP))cSt(f(V.,.),
f(.)).

Thus, is a partial realization of P in fc(St (.)). Since dim P
n+ 1, by Lemmas 3.1 and 3.2 is extended to a ull realization of P
in f(). Hence i.’(S, So)(G, Xo) is null homotopic.

Now, we are in a position to prove Theorem 1.1.
Proof of Theorem 1.1. Let ]. Then by Lemmas 3.2 and 3.4

we have Im [u(.)]cIm [(f)] for Okn+1, and (i.) Ker [u(f.)]
=0 for Ogkgn. Therefore, by [6, Theorem 1.2] (f)" ((X, x0)}
{(Y, Y0)} is a monomorphism for lkn and an epimorphism or
lkgn+l. This completes the proo of Theorem 1.1 by [6, Theorem
1.3] or [10, Theorem 2].

4. Proof of Theorem 1.2. In addition to the assumption in 3
we shall assume here that dim Y n+ 1.

Lemma 4.1. Let Z and let " (P, po)(G., Xo) be a continuous
map, where (P, Po) is a pointed polyhedron. Then there is a simplicial
subdivision P of P such that for each closed simplex a of P there is
V e with fc(V)(a) g.f.(a).

Proof. Let P be a simplicial subdivision of P such that or each
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closed simplex a of P there is V e with (a)f(V).
Suppose that (a)f(V,o) for a closed simplex a of P and for

V,o e . Then we have f(a) St (v,o K). Since dim Yn+ 1,
we can assume that K$+=K. Hence, by the proof of Lemma 3.3, we
have gf(a)St (f (V+,,o),f (+,)), where V,oV+,, e

-1and consequently (a) gf(a) St (f(V+,,o), f (+)). This
proves Lemma 4.1.

As a direct consequence of Lemmas 3.1 and 4.1 we have
Lemma 4.2. Let p,pv and le$ " (P, p0)(G, xo) be a con-

tinuous map, where P is a polyhedron of dimension n. Then i
i,g,f" (P, po)(G, Xo).
We are now able to prove Theorem 1.2.
Proof of Theorem 1.2. Assume that dim Xn. Let Z, <,.

Since the ech system of (X, x0) (cf. [5]) and {(G, x0), i,, A} are isomor-
phic in pro (0), there is e with , such that or some polyhedron
P of dimension n there are continuous maps " (P, po)O(G, Xo),
(G,, Xo)(P, Po) with i.. Hence by Lemma 4.2 we havei,
On the other hand, by Lemma 3.3 we have f,g,,. Hence i,,f,,
,f,, where ,=i,g,,. Therefore, by [6, Theorem 1.1], f is
shape equivalence.

The ollowing is also a direct consequence o2 Lemmas 3.3 and 4.2
(cf. [7, Theorem 4.3].

Theorem 4.. Let f be the same as in Theorem 1.1. Then for
a pointed space (P, Po) of dimension n the map f’o[P, X]o0[P, Y]
induced by f is bi]ective, where 0[P, X] means the set of shape mor-
phisms from (P, Po) to (X, Xo).
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